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Abstract

Current planners show impressive performance in many
real world and artificial domains by using planning
(either domain dependent or independent) heuristics.
But, on one hand, domain dependent planners still out-
perform domain independent planners by re-defining
domain theories, also including control knowledge. On
the other hand, these domain dependent planners re-
quire a careful and manual refinement of domain the-
ories to incorporate domain and control knowledge.
Here, we present a tool that automatically generates
domain and control knowledge as a middle ground so-
lution to the definition of efficient quality-based plan-
ners.

Introduction
Planning technology has experimented a big advance
in a decade. The development of graphplan (Blum &
Furst 1995) and the definition of domain independent
heuristics based on relaxed domains as in hsp (Bonet &
Geffner 2001) or ff (Hoffmann & Nebel 2001) has pro-
vided a great impact in the field. But, even if these
heuristics are very informative, and efficiently com-
puted, they are heuristics after all, so they fail in some
problems and domains, specially with respect to com-
puting good plans according to different quality metrics.
A parallel approach has been domain dependent plan-
ners. They rely on the time consuming, error prone
manual design of their domain theories. Representative
examples are: htn approaches, as shop2 (Nau et al.
2003), that require a re-definition of the domain theory
from the standard planning strips/adl-based compe-
tition language, pddl (Fox & Long 2002), into networks
of tasks and methods; or temporal logic approaches,
such as TlPlan (Bacchus & Kabanza 2000), that re-
quire the definition of new predicates based on others,
and search control knowledge expressed in a temporal
logic.
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In this paper, we propose the use of tools that can
guide the heuristics of the first type of planners when
they lead towards no solution or bad solutions, and do-
ing it automatically in opposition to the second type of
planners. In the past, these type of tools have usually
employed fully automated machine learning technol-
ogy ranging from macro-operators acquisition (Fikes,
Hart, & Nilsson 1972; Korf 1985), case-based reason-
ing (Veloso 1994; Kambhampati 1989), rewrite rules ac-
quisition (Ambite, Knoblock, & Minton 2000; Upal &
Elio 2000), generalized policies (Khardon 1999), deduc-
tive approaches of control knowledge learning (Minton
1988; Qu & Kambhampati 1995; Kambhampati 2000),
learning domain models (Wang 1994), to inductive
approaches (ilp based) (Borrajo & Veloso 1997; Es-
tlin & Mooney 1997; Aler, Borrajo, & Isasi 2002;
Huang, Selman, & Kautz 2000) (see (Zimmerman &
Kambhampati 2003) for a general overview of the field).

However, we believe that a better knowledge engi-
neering solution for the deployment of this technol-
ogy in real world applications consists of a mixed-
initiative approach to domain and control knowledge
acquisition (Aler & Borrajo 2002). More specifically,
we present here a tool that is able to learn search con-
trol knowledge in the form of control rules, as well as
macro-operators, for the re-definition of the domain
theory. Control rules learning is based on two ap-
proaches: a pure deductive approach, as ebl (Minton
1988; Mitchell, Keller, & Kedar-Cabelli 1986), and an
inductive-deductive approach, based on hamlet (Bor-
rajo & Veloso 1997). Macro-operators learning consists
on using a straightforward implementation of strips
macro-operators (Fikes, Hart, & Nilsson 1972). This
tool works on top of the ipss integrated planner and
scheduler (Rodŕıguez-Moreno et al. 2004b), which is
based on qprodigy (Borrajo, Vegas, & Veloso 2001)
and prodigy (Veloso et al. 1995).

ipss planner
ipss is an integrated tool for planning and schedul-
ing. It uses the quality-based version of the prodigy
planner, qprodigy, integrated with a constraints based
scheduler (Cesta, Oddi, & Smith 2002). We have not
yet used the learning tools in combination with the



scheduler, so we will focus now only on the planning
component of ipss. The planning component is a non-
linear planning system that follows a means-ends anal-
ysis (Veloso et al. 1995). The inputs to the planner
(domain theory, problem, and control knowledge) are
specified in the pdl language (Prodigy Description
Language (Minton et al. 1989; Carbonell et al. 1992))
which is similar in terms of representation power to the
adl version of pddl2.2 (including axioms, called in-
ference rules in pdl).1 It provides some language de-
pendent enhancements, such as the possibility of calling
lisp functions to specify values of operators variables
or operator quality metrics, or definition of functions
called handlers that are called by the planner everytime
a node is expanded. It also provides planner depen-
dent enhancements as the possibility of having pred-
icates with more than one numeric argument. Also,
control knowledge can be declaratively represented and
used by the planner by defining control rules.

From a control knowledge acquisition perspective,
ipss planning cycle, involves several decision points.
Figure 1 shows an schematic view of a generic search
tree with all those decisions. The types of decisions
made are:

• select a goal from the set of pending goals and sub-
goals;

• choose an operator to achieve a particular goal;

• choose the bindings to instantiate the chosen opera-
tor;

• apply an instantiated operator whose preconditions
are satisfied or continue subgoaling on another un-
solved goal.

Figure 2 shows an example of control knowl-
edge represented as a rule to determine when the
unload-airplane operator of the well known logistics
domain must be selected for achieving the goal of having
an object in an airport of another city where it is now.
First of all, remember that this is a backward chaining
planner, so decisions are made when trying to achieve
the goals. The different-vars-p meta-predicate in
the control rule checks whether all different variables
(between < and >) of the rule are all bound to differ-
ent values. So, it says that if an object has to be at
a location, that is of type airport, (goal) and currently
is at another location in another city (state), then in
order to achieve the goal, the planner should use the
operator unload-airplane.

The planner does not incorporate yet domain inde-
pendent heuristics as current planners do, so its per-
formance cannot really be compared against those with
respect to efficiency. However, we have shown elsewhere
that it can be competitive with respect to state of the
art planners if we compare it with respect to its flexi-

1We have defined translators working both directions,
pdl to pddl and viceversa, covering almost all representa-
tion features.
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Figure 1: Generic ipss search tree.

(control-rule select-operators-unload-airplane
(if (current-goal (at <object> <location1>))

(true-in-state (at <object> <location2>))
(true-in-state (loc-at <location1> <city1>))
(true-in-state (loc-at <location2> <city2>))
(different-vars-p)
(type-of-object <object> object)
(type-of-object <location1> airport))

(then select operator unload-airplane))

Figure 2: Example of a hand crafted control rule for
selecting the unload-airplane operator in the logistics
domain.

bility to incorporate quality-based, scheduling or other
types of reasoning (Rodŕıguez-Moreno et al. 2004a).2

The reasons to choose ipss are manyfold. Among
them, we can highlight the possibility of defining and
handling different quality metrics (Borrajo, Vegas, &
Veloso 2001), reasoning about multiple criteria, flex-
ibility to easily define new behaviours (through han-
dlers), capability to represent and reason about numeric
variables, definition of constrains on variable values in
preconditions of operators, explicit definition of control
knowledge as well as its automatic acquisition through
different machine learning techniques (Aler, Borrajo, &
Isasi 2002; Borrajo & Veloso 1997; Veloso et al. 1995),
and explicit rationale of each problem solving episode
through the search tree. This last feature is needed for
building learning techniques, since we need to access de-
cisions made and their rationale after search has been
performed.

2We have interesting results using path planning that
have been submitted elsewhere.



hamlet
hamlet is an incremental learning method based on
ebl (Explanation Based Learning) and inductive re-
finement of control rules (Borrajo & Veloso 1997). The
inputs to hamlet are a task domain (D), a set of train-
ing problems (P), a quality measure (Q) and other
learning-related parameters. As any machine learning
inductive tool, it needs a set of training problems to
be given as input. One way of providing them con-
sists on defining a problem generator, though this so-
lution requires to build one such generator for each do-
main. A potential solution consists on automating this
task (McCluskey & Porteous 1997). We have already
done some preliminar experimentation on what types
of problems, and domain models, are more appropriate
for hamlet and other related learning systems (Aler,
Borrajo, & Isasi 2000), that we would like to extend in
the future. Also, we have done some preliminar work on
active learning (automatic generation of good problems
for learning) with no convincing results yet.

The quality metric measures the quality of a plan
in terms of number of operators in the plan, execution
time (makespan), economic cost of the planning opera-
tors in the plan or any other user defined criteria. ham-
let can also use as input an initial set of control rules,
so it also can be used for theory refinement. Internally,
each call to the learning system receives the search tree
expanded by the planner to decide what to learn.

These would be the parameters a non-expert user
would set up. For advanced users, there are many other
parameters for which the tool provides a reasonable de-
fault value that we are not explaining here, but can be
played with when using the tool. The output is a set
of control rules (C) that potentially guide the planner
towards good quality solutions. Evidently, for each qual-
ity metric, a new set should be learned. hamlet has
two main modules: the Bounded Explanation module,
and the Refinement module. Figure 3 shows hamlet
modules and their connection to the planner.

Quality
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Optimality
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Problems
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Learned heuristics
(control rules)

HAMLET
Analytical

Learning

Inductive
Learning

Control
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Figure 3: hamlet high level architecture.

The Bounded Explanation module generates control
rules from an ipss search tree by finding examples of
right decisions (lead to a good solution instead of a fail-
ure path). Once a right decision is found, a control rule

is generated by extracting the meta-state, and perform-
ing a goal regression for finding which literals from the
state were needed to be true to make this decision (the
details can be found in (Borrajo & Veloso 1997)). These
ebl like rules might be overly specific or overly general.
hamlet Refinement module solves the problem of be-
ing overly specific by generalising rules when analysing
new positive examples of decisions of the same type.
It also replaces overly general rules with more specific
ones when it finds situations in which the learned rules
lead to wrong decisions. hamlet gradually learns and
refines control rules, in an attempt to converge to a
concise set of correct control rules (i.e., rules that are
individually neither overly general, nor overly specific).

Figure 4 shows an example of a rule learned by
hamlet in the logistics domain for selecting the
unload-airplane operator. This rule would be learned
by first learning a rule that would require the airplane
to be in another airport from <location1> (conditions
computed from the goal regression), then learning an-
other similar rule from a problem in which the airplane
is at the same <location1>, and finally inducing a
new more general rule from these other two (and re-
moving the other two more specific rules).

(control-rule select-operators-unload-airplane
(if (current-goal (at <object> <location1>))

(true-in-state (inside <object> <airplane>))
(different-vars-p)
(type-of-object <object> object)
(type-of-object <airplane> airplane)
(type-of-object <location1> airport))

(then select operator unload-airplane))

Figure 4: Example of a control rule learned by ham-
let for selecting the unload-airplane operator in the
logistics domain.

We have used the same deductive approach for au-
tomatically acquiring control rules for other types of
planners, such as hybrid htn-pop planners as hy-
bis (Castillo, Fernández-Olivares, & González 2001),
though we have not yet implemented its inductive coun-
terpart (Fernández, Aler, & Borrajo 2005). This do-
main independent planner has been used for industrial
manufacturing domains. Within the general framework
of learning control knowledge for different types of plan-
ners, we are trying to study what is the language for
describing this type of knowledge for different planning
paradigms, independently of the planner. Our ongoing
unpublished work we are applying the same ideas on
top of other planners in order to share control knowl-
edge among them with preliminary good results. The
main difficulty lies on the fact that each planner gen-
erates a different type of search tree, and, therefore,
different decision points. However, there is some com-
mon knowledge that appears in all searches that we are



trying to capture. In relation to sharing another type
of knowledge among planners, in (Fernández, Aler, &
Borrajo 2004) we report on the use of ff (Hoffmann
& Nebel 2001) solutions for bootstrapping learning in
planning in difficult domains for the base planners.

In relation to the use of hamlet as a mixed-initiative
approach or tool, we believe that these control rules
are easier to generate, understand, and, therefore, mod-
ify by a non planning expert than other kinds of con-
trol/domain knowledge coding, such as: the domain in-
dependent heuristics of heuristic based planners (Bonet
& Geffner 2001; Hoffmann & Nebel 2001), that have
the advantage of being domain independent, but they
have to be changed by re-programming the planning
tool; the temporal logic used in TlPlan (Bacchus
& Kabanza 2000), that has the advantage of a very
fast approach, but the user has to understand how
temporal logics work; or the generation of htn mod-
els (Nau et al. 2003; Currie & Tate 1991). This
assumption has been drawn from informal talks with
people developing such tools, and our experience in
htn industrial modelling (Fernández, Aler, & Borrajo
2005). However, it has only been empirically vali-
dated using a planning expert in (Aler & Borrajo 2002;
Fernández, Aler, & Borrajo 2004), but it has not been
yet done with non-experts. So, it is just a conjecture
for now, which we plan to evaluate in the future.

ebl
In order to also use a pure deductive approach, we built
an ebl module by re-using hamlet’s code. We only
used its Bounded-Explanation module and learned rules
from all decisions that were not the first alternative
tried in each node. So, in the previous example, it would
learn and keep the two more specific rules, instead of
performing the inductive step. Then, a utility analysis
was performed for each learned rule. According to the
usual equation (Minton 1988),

u(r) = s(r)× p(r)−m(r)

where u(r) is the utility of a rule r, s(r) is an estima-
tion of the time that the rule saves when used, p(r) is
the probability that the rule would match, and m(r) is
the cost of using the rule (matching time). Therefore,
we estimated the following variables:
• s(r): given that each rule is learned from a node in a

search tree, we estimate s(r) as the number of nodes
below the node from where it learned the rule, mul-
tiplied by the time ipss takes to expand a node. A
better estimate can be computed by using a second
training set of problems as Minton did.

• p(r): we estimated it as the number of times that
ipss tried to use the rule in subsequent problems in
the training phase divided by the number of times
that it actually fired. As before, a better estimate
can be obtained by using a second training set.

• m(r): it is estimated as the total matching time
added over all times that it tried to match the rule

divided by the number of times that it tried to match
it.

After training, the utility u(r) of each rule is com-
puted, and rules whose utility is less than a user-defined
threshold can be removed. Better solutions for estimat-
ing the control rules utility can be found in other pa-
pers (Gratch & DeJong 1992). The tool provides an
access to the needed information, so they can poten-
tially be easily implemented here also.

Macro-operators learning
The tool also provides a utility for automatically build-
ing macro-operators that are incorporated into the do-
main theory. This provides some kind of abstraction
that can be used by the user to refine the domain
theory, creating more efficient versions of it, as it has
been shown by macro-ff (Botea, Mueller, & Schaef-
fer 2005). Now, the implementation does not incorpo-
rate an utility analysis, as in recent implementations as
macro-ff or the work reported in (McCluskey & Por-
teous 1997), but we already have some code for com-
puting utility of control knowledge that can be easily
reused for this purpose.

Tool’s description
The current implementation status of the complete
planning and learning tool is that the different plan-
ning and learning components have already been imple-
mented as described in this and other papers (Borrajo
& Veloso 1997; Veloso et al. 1995; Aler, Borrajo, & Isasi
2002). We refer to these papers for more evaluation on
its learning techniques. The user interface is currently
under construction and we plan to show it during the
knowledge engineering planning competition. We al-
ready have a very simple user interface written in Lisp3

but we plan to rewrite it using generic user interfaces
generation tools. Our goal would be that using this in-
terface a non planning expert would be able to interact
with the planning and learning tool in order to gener-
ate, or modify control knowledge and macro operators
in collaboration with it.

Figure 5 shows a high level view of the tool. The cen-
tral part would be the interaction with the ipss plan-
ning tool. The input is a problem (potentially provided
by a problem generator), a domain description, a set of
planning parameters (time bound, node bound, depth
bound, how many solutions to generate, . . . ), and, op-
tionally a set of control rules. The output is a set of
solutions and an explicit search tree. The bottom part
corresponds to the control rules learning part. The in-
puts to this learning component are a domain, a set of
training problems, a search tree for each problem, and a
set of parameters (quality measure, learning eagerness,
time bound, . . . ). The output is a set of control rules
that can be refined by the user through the GUI (or
by any other learning system, as in (Fernández, Aler,

3More specifically, in Lispworks.



& Borrajo 2004)). The top part is the macro-operators
learning component. It receives a domain, a set of so-
lutions and some parameters, and generates as output
a set of macro-operators. These can be further refined
by the user through the GUI.
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