
PlanWorks: A Debugging Environment for
Constraint Based Planning Systems

Patrick Daley ∗ † and Jeremy Frank and Michael Iatauro ‡ and Conor McGann § and Will Taylor
Computational Sciences Division

NASA Ames Research Center, MS 269-3
frank@email.arc.nasa.gov
Moffett Field, CA 94035

Introduction
In recent years, model-based planning has moved from rea-
soning about models largely described with propositions
(e.g. STRIPS) to reasoning about time, resources, and con-
straints on complex numeric quantities (Smith, Frank, &
Jónsson 2000), (Fox & Long 2003). Numerous planning
and scheduling systems employ underlying constraint rea-
soning systems to handle the richness and diversity of such
constraints (Frank & J́onsson 2003). Debugging such sys-
tems involves the search for errors in model rules, constraint
reasoning algorithms, search heuristics and the problem in-
stance (initial state and goals). In order to effectively find
such problems, users must see why each state or action is in
a plan by tracking causal chains back to part of the initial
problem instance. They must be able to visualize complex
relationships among many different entities and distinguish
between those entities easily. For example, a variable can be
shared between several constraints, as well as part of a state
or activity in a plan; the activity can arise as a consequence
of another activity and a model rule. Finally, they must be
able to track each logical inference made during planning.

We have developedPlanWorks, a browse-based system
for debugging constraint-based planning and scheduling
systems. PlanWorks assumes a strong transaction model
of the entire planning process, including adding and remov-
ing parts of the constraint network, variable assignment, and
constraint propagation. The planner logs all transactions to
a relational database that is tailored to support queries for
a variety of components.Visualizationcomponents consist
of specialized views to display different forms of data (e.g.
constraints, activities, resources, and causal links). Each
view allows user customization in order to display only the
most relevant information. Inter-view navigation features al-
low users to rapidly switch views to examine the trace of
the process from different perspectives.Transaction query
mechanisms allow users access to the logged transactions to
visualize activities across the entire planning process. While
originally developed for debugging, PlanWorks has the po-
tential to serve as a knowledge capture tool and an end-user

∗Authors listed in alphabetical order.
†Foothill College
‡QSS
§QSS

operations tool as well.
PlanWorks is implemented in Java and employs a MySQL

relational database back-end. PlanWorks can be used either
online while iterative planning and debugging is performed,
or offline after capturing the entire planning process. Fur-
thermore, PlanWorks is an open system allowing for exten-
sions to the transaction model to capture new planner al-
gorithms, different classes of entity (e.g. complex resource
classes) or novel heuristics. PlanWorks was specifically
developed for the Extensible Universal Remote Operations
Planning Architecture (EUROPA2) developed at NASA, but
the underlying principles behind PlanWorks make it use-
ful for many planning systems, a point we address at the
end of the paper. PlanWorks has been used to visualize
logs generated by three different planners; two versions of
EUROPA2 as well as a prototype of the Mission Data Sys-
tems (MDS) planner developed at JPL (Dvoraket al. 2000).

The paper is organized as follows. We first describe
some fundamentals of the EUROPA2 constraint-based plan-
ning system, and describe a simple planning domain used
throughout the rest of the paper. We then describe Plan-
Works’ principal components. We discuss each component
in detail, and then describe inter-component navigation fea-
tures. We describe how to configure logging of data from the
planner to reduce debugging time, which influences what
PlanWorks can display. This configuration can be done in
a configuration file, or using PlanWorks. We discuss how
PlanWorks is used during debugging. Finally, we describe
applicability of PlanWorks beyond EUROPA2 , discuss sys-
tem requirements and deployments, and discuss future work.

EUROPA2

EUROPA2 provides efficient, customizablePlan Database
Servicesthat enable the integration of automated planning
into a wide variety of applications. These services are based
on some simple building blocks.Plans are composed of
predicates, each of which has a name, start time, end time,
duration, and a (possibly empty) set of parameters. Each in-
stance of a predicate in a plan is represented by atoken, and
each parameter of the predicate is represented by variables.
Predicates are associated with eithertimelinesthat support
totally ordered sequences of states, orresourcesthat sup-
port possibly concurrent actions that do not exceed a max-
imum capacity. Timeline or resource instances are referred

to asobjects, and during planning each token is assigned to
an object in the plan.Domain rulesare assertions that if a
predicateP is in a plan, then other predicatesQi must also
be in a plan, and are related toP by constraints among the
variables of the predicates. Domain rules may also assert
that resources are impacted by predicates; resource impacts
are calledtransactions, and also have variables that repre-
sent them. EUROPA2 does not implement any planning al-
gorithm; rather, it provides services that support different
planning algorithms according to the application. As such,
it can be used to support progression planners, regression
planners, sequential or causal link planners, and so on. To
enable this generality, EUROPA2 distinguishes betweenfree
tokens (consequences of rules that haven’t been inserted into
plans),active tokensandmerged tokens. Planners can insert
free tokens into plans (making them active) or merge free
tokens with active tokens.

A Sample Planning Domain
EUROPA2 domains are written in a domain description lan-
guage called NDDL. To illustrate the fundamentals of Plan-
Works, we use a planning domain loosely based on a plan-
etary surface robot namedRover. Roveris a mobile robot
that can move from location to location. ARoverhas a bat-
tery on board, and can replenish its energy levels using solar
power. Locations are described as follows:

class Location {
int x; int y;

Location(int x, int y) {
x = x; y = y;

}
}

The properties of the Rover are described as follows:

class Rover {
predicate At {Location l; }
predicate Going {Location from;

Location to; }
Resource battery;

battery = new Battery(10, 3, 30);

}

A domain rule in EUROPA2 describing rover movement
is:

Rover::Going {
neq(to, from); // to != from

meets(object.At a0);

eq(a0.l, to);

met by(object.At a1);

eq(a1.l, from);

subgoal(object.battery.transaction tx);

calcConsumption(tx.quantity, from, to);

// Consume at the beginning

eq(tx.time, start);

}

Finally, a problem instance for the Rover is:

Rover spirit = new Rover();

Location rock = new Location(1, 1);

Location hill = new Location(2, 3);

Location lander = new Location(5, 8);

goal(Rover.At A);

eq(A.l, rock); eq(A.object, spirit);

leq(A.start, 0); leq(0, A.end);

goal(Rover.At B);

eq(B.l, lander); eq(B.object, spirit);

leq(B.start, 0); leq(0, B.end);

Getting PlanWorks the Goods

During planning, EUROPA2 reads the domain rules to de-
termine if any of them are applicable given the current state
of the plan. If so, new tokens, resource transactions, vari-
ables, and constraints are created, and the domain rule ap-
plication is recorded. As the planner makes decisions, to-
kens can be assigned to timelines, transactions can be as-
signed to resource instances, variables can be assigned, and
constraints can be enforced, leading to reductions in the do-
mains of variables. Each of these activities is logged, and
each entity is assigned a unique key that allows for the track-
ing of entities and their relationships during planning. This
information is passed down to PlanWorks to enable users to
uncover the relationships between entities in the plan.

PlanWorks can be used in one of two modes. Planners
can generate logs for PlanWorks offline, after which Plan-
Works is invoked to view the logs. When planning takes a
long time, this is impractical. Alternatively, PlanWorks can
be started and provided a pointer to a planner. PlanWorks
then allows the user to interleave planning and debugging.
The user can run the planner for a fixed number of steps,
investigate, then continue running the planner or terminate
planning.

The basic data integration point is through the database.
At each “step” (where step is defined by the planner, but
is logically the end of propagation after a planner decision),
the current state of the plan graph, the set of transactions that
describe the transformation from the previous plan graph, as
well as statistics about the graph are logged in a format opti-
mized for importation into the database. The set of files for a
single step are collected into a directory, which is itself in a
directory representing the particular instance of planner ex-
ecution. These data are imported and queried upon request,
i.e. the statistics of the plan run are loaded when the user
opens the Sequence Steps View, transactions are loaded as
part of a transaction query, and the plan graph data is loaded
when the user opens a step view.

Figure 1 shows a fragment of the Entity Relationship Dia-
gram for the SQL table structure describing the format Plan-
Works accepts. The fragment captures the logging of the
most important core components of the planning process:
Tokens, Objects, Variables, Constraints, Rules and Rule In-
stances. The ERD indicates key relationships between enti-
ties that are logged to ensure efficient database queries; these
are later marshalled into the views that we describe in the
next section.

Legend

Primary Key

c varchar
i int

d double
e enum
b blob

* required field

Token

* TokenId
* PartialPlanId
i SlotId
i SlotIndex
i * IsFreeToken
i * IsValueToken
i * StartVarId
i * EndVarId
i * DurationVarId
i * StateVarId
c PredicateName
c ParentName
i ParentId
i ObjectVarId
b ParamVarIds
b ExtraData

Object

-
* ObjectId
* PartialPlanId
i ObjectType
c ObjectName
b ChildObjectIds
b VariableIds
b *TokenIds
b ExtraData

RuleInstance

*RuleInstanceId
* PartialPlanId
i * SequenceId
i * RuleId
i * MasterTokenId
b SlaveTokenIds
b RuleVarIds

Rules

* SequenceId
* RuleId
b RuleSource

Variable

* VariableId
* PartialPlanId
i * ParentId
c * ParameterName
e *DomainType
d *EnumDomain
e * IntDomainType
c IntDomainLowerBound
c IntDomainUpperBound
c * VarType

VConstraint

* ConstraintId
* PartialPlanId
c*ConstraintName
e* ConstraintType

ObjectId/ParentId

ParentId

TokenId

VariableIds
ParentIdParentId

ParentId

Figure 1: Part of the Entity Relationship Diagram for Plan-
Works. This diagram shows the SQL table structure for To-
ken, Variable, Constraint, Object, Rule and RuleInstance ta-
bles as well as the relationships between them.

PlanWorks Components

Initial Views

Upon startup, PlanWorks presents users with a menu bar
offering features for project creation and management. A
project contains numerousplanning sequencescorrespond-
ing to the execution of a planner on a problem instance. The
menu allows users to create new projects, add and delete se-
quences, and open a sequence for viewing.

When a sequence is opened for viewing, PlanWorks dis-
plays two views: theSequence Step Viewand theSequence
Query View.The Sequence Step View, shown in Figure 2, is
a broad overview of the planning process. The view is pre-
sented as an inverted histogram, with the number of steps
of the process along the bottom The histogram bars are bro-
ken into components representing the number of variables,
constraints and tokens in the plan at a given point in the plan-
ning process. Moving the mouse over a bar of the histogram
shows the step number and number of entities of each type in
the plan at that point in the process. At a glance, the user sees
how the plan’s size evolved throughout planning, and can see
patterns (such as thrashing in a chronological backtracking
algorithm, or local optimal in a local search planner). An in-
dicator above each bar of the histogram shows whether the
data for that step has been loaded into PlanWorks.

The Sequence Query View allows the user to request de-
tailed information about the underlying transactions over the
entire planning sequence. The scope of logging is crucial to

support these queries. Each time an entity is created or de-
stroyed during planning, this information is logged; at cre-
ation time, each entity is given a unique key. These keys
make it possible to track entities over the course of planning.
Constraints can be tracked when they execute, tokens can be
tracked as their state changes (e.g. from creation to insertion
on an object), planner decisions can be tracked, and so on.

Examples of supported transaction queries include entity
creation, assignments and unassignments of tokens to ob-
jects, assignments and unassignments of values to variables,
constraint enforcement, checking for variables with only one
domain value remaining, and more.

The Sequence Step View is also used to launch numer-
ous other views of the plans generated at each step of the
sequence. These views fall into one of three categories:
Plan Views, Entity Relationship ViewsandTransaction View.
These views are described further below.

Plan Views
Plan Viewsare holistic views of the entire plan. Plans are
sequences of states or actions over time, so by their nature,
the Plan Views are meant to convey a sense of what the plan
looks like overall. However, EUROPA2 can represent plans
that are more complex than time-stamped sequences of ac-
tions. Plans can betemporally flexible; that is, states may
have start times or durations that are unknown until plan ex-
ecution. Further, plans may involve resources whose quan-
tities change over time. Thus, PlanWorks requires visual
representations of timelines or resources that are temporally
flexible. For this reason, three distinct Plan Views are pro-
vided.

The Timeline Viewis designed to show the sequence of
predicates on a timeline. Since tokens can be unified, the
Timeline View shows the number of unified tokens support-
ing each predicate; moving the mouse over the predicate
shows the keys of the unified tokens and indicates which
of these is the active token. The Timeline View shows the
possible values of the start and end times of each predicate
on the timeline. Finally, the Timeline View shows any free
tokens. This is shown in Figure 2. If we also refer back
to Figure 1, we can see how queries to the database return
the data that is rendered as a TimelineView. PlanWorks asks
for the Tokens on a particular Object. In turn, the Tokens
are affiliated with Variable objects representing the start and
end times; data elements inside the Variables indicate the
lower and upper bound of the timepoints, names, etc. This
information is marshalled into the correct format to call the
rendering and layout routines.

The Temporal Extent Viewis designed to show more
temporal information about tokens than the Timeline View.
Each token has a series of icons representing the possible
values of the start time (downward pointing triangles), end
time (upward pointing triangles) and duration (horizontal
line bracketed by the triangles). This is shown in Figure 2.
Moving the mouse over each of these shows the values, and
an absolute time scale at the bottom is used for reference.

Figure 2: PlanWorks Plan Views. The Sequence Step View
is shown at the top, the Temporal Extent View is shown in
the middle, and the Timeline View is shown at the bottom.

By moving back and forth between the Timeline View and
the Temporal Extent View, users can see how constraints on
individual tokens lead to bounds and orderings on predicates
in timelines. The Temporal Extent View also includes each
resource transaction in the plan. Moving the mouse over the
resource transaction shows the impact that transaction has
on the resource. TheResource Transaction Viewrestricts the
Temporal Extent view so that only the resource transactions
are shown.

TheResource Profile Viewshows the minimum and max-
imum quantities of a resource available as a function of time
stemming from the transactions in the plan. Again, moving
back and forth between the Temporal Extent View (or the
Resource Transaction View) and the Resource Profile View,
users can see how resource transactions lead to bounds on
resource availability.

Entity Relationship Views
EUROPA2 generates a large number of entities during the
course of planning. These entities range from individual to-
kens, variables representing their parameters and constraints
on those variables to object instances and domain rule invo-
cation instances. TheEntity Relationship Viewsare graphi-
cal views that show each of these entities and how they are
related to each other. Under the Help menu, the Shapes op-
tion provides a handy guide to the shape each entity takes on
in these views.

TheNavigator Viewis an entity relationship graph capa-

ble of showing every entity in an individual plan. The Navi-
gator View is launched by selecting an entity from any other
view, and initially shows only a small number of entities and
relationships. Each entity in the Navigator can be “opened”
to show its relationships to other (currently hidden) entities,
and subsequently “closed” to hide those relationships. En-
tities that can be closed are outlined in bold, and those that
can be closed are not. The entity graph is directed; the de-
scription of the problem defines the initial set of entities,
and all entities are derived from them via actions taken by
the planner and the rules of the domain. Users can explore
the entities and their relationships and find out how various
parts of a plan are related to each other. They may do so
by hand, manually opening or closing various entities. The
Navigator Window also supports a “Find Entity Path” fea-
ture that discovers paths between entities (whether they have
been opened by the user or not). Navigator View also sup-
ports a “Find by Key” feature that highlights an entity with
the given key. Each Rule Instance entity can be expanded
to show the domain rule text that led to the new token or
transaction, as well as the tokens involved in that part of the
view.

The Token Network Viewrestricts the Navigator view to
only tokens, transactions and rule instances. This allows the
user to focus exclusively on the “causal chain” that explains
why particular tokens were generated. The resulting graph
is a directed tree. As with the Navigator View, each Rule
Instance entity can be expanded to show the domain rule
text that led to the new token or transaction, as well as the
tokens involved in that part of the view. This is shown in
Figure 3. The Token Network View also supports the same
“Find Entity Path” and “Find by Key” features supported by
the Navigator.

TheConstraint Network Viewrestricts the Navigator View
to constraints, variables, tokens, transactions and model con-
stants. Initially, the view shows all model constants, predi-
cates, transactions and rules. Model constants may be the
values of variables, and may be complex structures; for ex-
ample, in our simple Rover domain,pathsconsisting of an
initial location, final location and cost in terms of energy
consumption are constants. Each model constant can be
opened to show its underlying structure. Tokens and transac-
tions are associated with sets of variables, which in turn are
in the scope of constraints. Domain rules may also have “lo-
cal variables” to reduce the number of parameters of pred-
icates. The user can incrementally explore the Constraint
Network by opening tokens, transactions, or rules, and sub-
sequently opening the variables or constraints. The Con-
straint Network View also supports the “Find Entity Path”
and “Find by Key” features.

Transaction View
EUROPA2 was designed to support multiple planning
paradigms, from heuristically driven chronological back-
tracking planners to local searching planners to iterative
sampling planners. Consequently, logging of information

Figure 3: PlanWorks Token Network View and Rule In-
stance forRover::Going .

about how the planner makes decisions is the responsibility
of the planner, while logging the consequences of planner
decisions is the responsibility of EUROPA2 . The Trans-
action Viewshows every transaction EUROPA2 performed
this step. This includes checking domain rule applicability,
entity creation and destruction, variable assignment, token
state manipulation, constraint enforcement, and so on. Fig-
ure 4 shows the Constraint Network View and the Transac-
tion View together.

Navigating PlanWorks

An early decision was made in PlanWorks to create sep-
arate Views that contain information that users typically
want grouped. However, PlanWorks contains numerous fea-
tures that allow users to efficiently navigate between Views.
These features allow users of PlanWorks to rapidly move
from View to View when debugging planning domains and
planners.

Launching Views

Almost all Views can be launched from any other View. The
Navigator View can be launched when the mouse is over an
entity such as a token, variable variable, constraint, constant
or rule in a View (except the Transaction View). All other
views can be launched when the mouse is over the back-
ground of a view.

Figure 4: PlanWorks Constraint Network View and Trans-
action View.

Tracking Objects by Key

All objects have keys, and every view has a method to search
for entities by key. Furthermore, the Views opened on start-
ing PlanWorks have facilities for querying transactions by
key. Finally, moving the mouse over entities will show the
keys of entities. The entity relationship views can be used to
provide keys used for querying the transaction database.

Snapping to Entities

PlanWorks provides additional features to navigate between
Views. An entity can be madeactive in one view, and the
user can then “Snap to Active Entity” in a second view.

Filtering Views

In addition to manually opening and closing entity relation-
ships to incrementally explore views, PlanWorks provides a
custom filter for each View. This filter allows rapid reduction
of the View to exclude designated predicates, classes (time-
lines or resources), or predicates in particular time ranges.

Overviews

Every View can have an associated Overview window that
shows the view at a maximum zoom. This allows users to
simultaneously examine a small number of related entities
in a View, while also seeing the “Big Picture”.

Stepping Forward and Backwards
All Views pertain to one step of the planning sequence. Each
View has buttons that allow the user to advance or retreat the
step the View shows. This permits a primitive “animation”
feature that shows how a View changes during planning. As
the View changes, the window is updated. Furthermore, the
mouse allows users to either advance or retreat all Views
simultaneously.

Multiple Views
PlanWorks can display multiple windows with the same
view (e.g. two Token Network Views). These views can
display data from the same model at different steps; the step
number is indicated in each View’s title bar. Also, it is pos-
sible to display data from different versions of the model,
so that users can see the impact of debugging. The name of
the project has a version number appended to it, indicating
revisions and re-running of the planner.

Managing Views
All Views are labeled at the top with View name, Project,
Sequence number and Step. Thus, at a glance, a user can au-
tomatically tell what information they are seeing in a View.
In addition, there is a drop-down menu named Window that
allows users to see at a glance what windows are open, as
well as either Tile or Cascade all open windows. Finally, us-
ing the mouse, users may automatically close, hide or open
all Views.

Configuring PlanWorks Logging
EUROPA2 is capable of logging large amounts of informa-
tion during planning. For large plans with many constituent
parts or for large searches, this can be both time consuming
and produce more information than the user desires. For this
reason, PlanWorks allows users to configure logging to re-
duce the amount of information logged. This is especially
useful as debugging proceeds and the user is able to focus
on parts of the search space where information about possi-
ble bugs is most likely. Users can specify where plan steps
should be logged and where to look for model files. Users
can specify that every step is logged, only the final plan is
logged, or the frequency of steps to log (i.e. every 5th step).
Finally, users can specify which transactions to log.

PlanWorks Planner Control
The PlanWorks Planner Control window allows the user to
control EUROPA2 planner execution on a per step basis.
Specifically, PlanWorks permits fine control of the planner’s
data logging, which greatly speeds planner execution and
reduces planner data storage requirements. Debugging with
integrated Planner Control involves creating and configuring
a PlanWorks project followed by cycles of running, viewing,
changing, and rerunning the plan.

Configuring a PlanWorks Project
PlanWorks provides the user the capability to create, config-
ure and save multiple Planner Control projects. The setup of

a project includes specifying the path to the planner dynamic
library, the path to the user’s model library and initial state
file, and the path to the destination directory for the plan-
ner’s output. Each of these configurations is saved in a file
describing the configuration as discussed previously.

Running the Planner
Once a new project has been configured or an existing
project has been opened, the user is ready to start debug-
ging. The Create New Sequence window starts the planner
control process. First it allows the user to modify the project
configuration. After PlanWorks finds all of the specified files
it launches a Transaction Types to Log window that enables
the user to limit the transaction types the user would like EU-
ROPA2 to log. PlanWorks then launches a Planner Control
window that provides the controls for stepping the planner.
The Planner Control window includes buttons for:

• running the planner up to step N and logging data for only
that step.

• running the planner for the next N steps logging data for
each step.

• running the planner to completion, logging data for only
the last step in the plan.

• early termination of the run.

Once a plan has run to completion or terminated, it can be
rerun without exiting PlanWorks.

Debugging with Planner Control
When debugging a model, the user may first want to skip to
the last step in the plan. This may be the final plan step of
a completed plan or the last step before a planner time out.
This function is provided with the WriteFinalStep button. If
the planner does not find a solution, the user can then use the
Sequence Step View to display histograms of variables, con-
straints, and tokens used in each step. If, for instance, exces-
sive backtracking is observed, the user can rerun the model,
skipping to the step where backtracking occurs. From this
point the user can proceed to debug the problem. Identifying
steps of interest before enabling data logging is crucial for
debugging large models.

Once a problem has been identified, the user can modify
and rebuild the model library and initial state file in a ter-
minal window outside of PlanWorks and then initiate a New
Sequence Window from PlanWorks. The planner can be di-
rected to skip to the step of interest before logging any data.
In most cases, where only the model or initial state has been
modified this will be a quick and easy process.

Viewing Multiple Sequences
PlanWorks is capable of displaying multiple sequences from
different runs of the planner. This allows users to compare
runs and determine whether they have fixed a problem. An
example of this is shown in Figure 5.

Figure 5: PlanWorks displaying data from two runs of the
planner after modification of the model. The Sequence Step
Views are shown at the top, and Timeline Views of the last
plan step are shown at the bottom.

Debugging in PlanWorks
The capabilities of PlanWorks to visualize a specific plan are
its main strength. This provides confidence in both the fi-
nal result (primarily through Resource and Timeline Views)
and the means by which that result was obtained (primarily
through the Token Network View). The Sequence Step View
can also provide a rapid means of assessing “thrashing” be-
havior in backtracking style planners by exhibiting obvious
patterns (assigning 50 variables then backtracking).

Should the user suspect a problem because a plan does not
look right, the user can visualize the network of constraints
and obtain a view of the propagation in that constraint net-
work using the Transaction Query. Badly constructed mod-
els usually succumb to this type of investigation, as missing
rules or extra or wrong constraints become obvious. We now
present two small examples of how PlanWorks can be used
to find bugs in EUROPA2 .

Missing Model Rule
Suppose that the rule governing rover movement was miss-
ing a part:

Rover::Going {
neq(to, from); // to != from

meets(object.At a0);

eq(a0.l, to);

met-by missing
...

}

The resulting plan could then have two consecutive

Rover::Going tokens; this would appear in the Timeline View.
From here, the user could proceed in several ways. One op-
tion is to launch the Token Network View and see that only
oneRover::At results as a subgoal fromRover::Going . Upon
opening the Rule Instance View, the user would see the rule
text and the context in which the rule was invoked, and be
able to revise the rule. Alternatively, the user could launch
the Navigator View and discover the problem.

The Wrong Constraint
As another example, supposer that the user used the wrong
constraint in a rule:

Rover::Going {
eq(to, from); // to == from? silly!
... }

In this case, the user might see an unexpectedly long plan,
as is shown in Figure 5. Again, there are several candidate
debugging scenarios. One option is for the user to open the
Token Network View, and observe thatRover::Going begets
Rover::At , which begets anotherRover::Going ad-infinitum.
Mousing over aRover::Going reveals that its parametersfrom

and to are equal. Opening a Rule Instance View on the
Rover::Going , the user will notice the incorrect use of the
eq constraint. This is shown in Figure 6. Another possibility
is that the user immediately suspects a problem with con-
straint reasoning, and opens the Constraint Network View.
After finding the key of a parameter of aRover::Going , the
user then can check the transactions enforced on this vari-
able using the Transaction View. Upon realizing that noneq

constraints are enforced, the user can then check the Rule In-
stance View, and realize that the wrong constraint was used
in the rule.

Applicability of PlanWorks
PlanWorks was specifically designed with EUROPA2 in
mind, but planners using modeling languages such as PDDL
can (with some work) make use of PlanWorks. The rules
for the simple Rover domain can easily be translated into
PDDL, either with or without temporal annotations. A plain
STRIPS encoding ofRover::Going looks like this (omitting
the static predicate and object descriptions):

(:actiondrive

:parameters (?v ?l1 ?l2)

:precondition(and(

(location ?l1) (location ?l2)

(vehicle ?v) (at ?v ?l1)))

:effect (and (at ?v ?l2) not(at ?v ?l1))

)

The notions of state and action as sub-classes of tokens
can be added to the ERD of Figure 1 and logged appro-
priately. Variables are straightforward. Preconditions en-
able actions to occur; thus, connections between states and
rules that are enabled is also easily logged. Capturing the

Figure 6: PlanWorks displaying a suspicious Sequence Step
View (top), the long chain of rules (middle) and faulty rule
in the Rule Instance View (bottom).

rule text for rules that are applied in a state can be done
by tracking file line number of the model input file (which
is how PlanWorks receives the data from EUROPA2 based
planners). Progression and regression planners have an ad-
vantage over EUROPA2 planners in that the token transac-
tion model is much simpler; there is no unification (while
EUROPA2 planners can do progression and regression plan-
ning, unification is supported; however, no such transactions
will be logged.) Partial order causal link (POCL) planners
use a transaction model similar to that of EUROPA2 in that
preconditions can be shared between actions (resulting in
unification) and causal links are added to the plan to ensure
those preconditions are protected, corresponding to the ad-
dition of constraints (see the a discussion of constraints as
generalized causal links in (Frank & Jónsson 2003)). Elab-
orations to handle numeric fluents and temporal constraints
of newer versions of PDDL can proceed along similar lines.

A significant drawback to using PlanWorks for PDDL-
based planners is that PlanWorks currently has no facility
to visualize domain independent heuristics such as the Plan-
Graph. However, with some work, views such as the To-
kenNetwork View can be modified to visualize either Blum
and Furst’s PlanGraph with mutual exclusions (Blum &
Furst 1995) (and by extension Smith and Weld’s TGP graph
(Smith & Weld 1999)), the relaxed plan graph, and cost-
based heuristics that are appended to the PlanGraph (for ex-
ample (Bonet & Geffner 2001)).

Build Requirements
PlanWorks was built largely with COTS technology, and has
been fielded on Mac OSX 10.2 and 10.3, Linux and Solaris.
PlanWorks requires Java 1.4.1 or higher, MySQL 4.0.13 or

higher, and makes use of Ant (a replacement for Make used
to manage build commands, using XML-based build files),
Swing (graphics, layout and user interface toolkit bundled
with Java), and JGO (additional diagram graphics libraries
associated with Swing). Ant and JGO have been bundled
with PlanWorks, while numerous public versions of MySQL
(up to 4.1.7) have been integrated with PlanWorks. As an
aside, it was found that numerous JGO classes rendered de-
sired views quite slowly, so some customization of layouts
was done by the team.

Conclusions and Future Work
We have described PlanWorks, a system designed to de-
bug planning domains and planners. While PlanWorks
was designed to debug planners built on top of the
EUROPA2 system, it can be used by any planner that obeys
a small number of rules about how to log its inner workings.
PlanWorks was originally conceived of as an Integrated De-
velopment Environment for building and managing projects
with EUROPA2 . In the near future, PlanWorks will be ex-
tended to handle visual model building, visualizing plan ex-
ecution and associated constraint reasoning. Furthermore,
EUROPA2 is designed to support many different planning
algorithms. We will also extend PlanWorks to enable user
customization to visualize different planner algorithms and
heuristics.

Acknowledgements
The authors would like to acknowledge Andrew Bach-
mann’s contributions to the NDDL language used to de-
scribe EUROPA2 planning domains, Tania Bedrax Weiss
for ongoing work on EUROPA2 , Sailesh Ramakrishnan for
contributions as PlanWorks’ prototype user, and Bob Kanef-
sky for the Potato prototype. This project was funded by the
NASA Intelligent Systems Program.

References
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
95), 1636–1642.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1-2):5–33.
Dvorak, D.; Rasmussen, R.; Reeves, G.; and Sacks, A.
2000. Software architecture themes in JPL’s mission data
system. InIEEE Aerospace Conference.
Fox, M., and Long, D. 2003. Pddl 2.1: An extension to
pddl for expressing temporal planning domains.Journal of
Artificial Intelligence Research20.
Frank, J., and J́onsson, A. 2003. Constraint-based interval
and attribute planning.Journal of Constraints Special Issue
on Constraints and Planning.
Smith, D. E., and Weld, D. S. 1999. Temporal planning
with mutual exclusion reasoning. InIJCAI, 326–337.
Smith, D.; Frank, J.; and Jónsson, A. 2000. Bridging the
gap between planning and scheduling.Knowledge Engi-
neering Review15(1).

