
Knowledge Acquisition and Knowledge Engineering in theModPlanWorkbench

Stefan Edelkamp and Tilman Mehler
Computer Science Department

Baroper Str. 301
University Dortmund

{stefan.edelkamp,tilman.mehler }@cs.uni-dortmund.de

Abstract

In this paper we present the architecture and the abilities of
theModPlanWorkbench; an interacive knowledge acquisi-
tion and engineering tool for AI planning. It provides au-
tomated domain analysis tools together with PDDL learn-
ing capabilities. Integrated optimal and suboptimal planning
technology extends state-of-the-art technology.

With the tool, domain experts assist solving hard combina-
torial problems. Approximate or incremental solutions pro-
vided by the system are supervised. Intermediate results are
accessible to improve domain modeling and to tune explo-
ration in generating enhanced plans, which, in turn, can be
bootstrapped for domain description inference.

Introduction
Both knowledge acquisition and knowledge engineering for
AI planning systems are crucial to improve their effective-
ness and to enlarge the application focus in practice.

On the one hand – surely pushed by the series of inter-
national planning competitions (McDermott 2000; Bacchus
2001; Long and Fox 2003; Edelkampet al. 2004) – the
efficiency of planning technology is continously increas-
ing. Many recent planning systems can quickly solve rather
complex planning problems. The improvement of technol-
ogy is to be observed especially in suboptimal, but is also
noticable in optimal planning. On the other hand, as current
planning technology is still underrepresented in industrial
applications, there is more transfer needed.

Henceforth, the research focus in AI planning shifts
towards practical acceptance, with problem scenarios for
transportation and routing, elevator scheduling, space ap-
plications, game playing, avionics, handheld setup, soft-
ware verification, diagnosis in power networks, oil pipelin-
ing, etc., as indicated by the range of benchmarks currently
used in planning competitions (Hoffmannet al. 2005).

With recent extensions to PDDL (Fox and Long 2003),
namely PDDL2.1, a powerful and flexible specification do-
main description language has been established. Inpropo-
sitional planningtyped domain descriptions and ADL ex-
pressivity is available (Level 1),metric planning(Level 2),

mixed propositional and numerical problem instances can
be devised and optimized. Intemporal planning(Level 3),
a bridge between planning and scheduling has been estab-
lished: action generation as in planning is merged with ac-
tion arrangement as in scheduling.

Additionally, PDDL2.2 (Edelkamp and Hoffmann 2004)
provides state completion based domain axioms specified in
form of derived predicates, and restricted use of exogenous
events in form of timed initial predicates and action time
execution windows. The PDDL language definition itself is
not likely to be the bottleneck for domain experts to actu-
ally integrate planning technology. All that is missing is a
set of intelligent tools that take over a large amount of de-
sign automation to quickly generate planning domain mod-
els and to select and adjust different state-of-the-art solvers.
As with the software development cycle, establishing a do-
main model is an iterative process.

All aspects that are considered in domain-independent
planning have to be automated. However, for most ex-
isting planning systems, some decisions that are inferred
automatically can be improved by limited user guidance.
Examples range from improvements to the domain encod-
ing (Edelkamp and Helmert 1999), the inference of domain
invariances (Fox and Long 1998; Gerevini and Schubert
2000; Rintanen 2000), observed goal orderings (Koehler
and Hoffmann 2000), generic types (Long and Fox 2000),
via the choice of specialized exploration algorithms (Long
and Fox 2001), pruning options in form of symmetry de-
tection (Fox and Long 1999), automated reduction of op-
erator lists (Haslum and Jonsson 2000), learning of macro
operators (Boteaet al. 2005), to pattern database selec-
tion (Edelkamp 2001), hierarchical decomposition (Nauet
al. 1999), and control rules (Bacchus and Kabanza 2000).

As a consequence, we have designed a planning work-
bench that provides knowledge acquisition options to ac-
cess and modify the outcome provided by static analyz-
ers, together with visualization assistence in understand-
ing the validity of computed plans. Moreover, it includes
knowledge engineering tools to ease domain modeling. The
workbench is capable to handle large fragments of current



PDDL, including ADL expressivity, derived predicates, as
well as metric and durative actions.

In this work we first present components we found es-
sential to be accessible for the domain expert. We identify
the combinatorial problems that need to be solved, illustrate
how intimate knowledge is inferred by the system, and how
flexible it is refined by the expert. We start with the do-
main analysis, converting uninstantiated PDDL input files
to fully instantiated and annotated PDDL, including the in-
ference of mutivariate variables domains, as used in many
recent planning modules. We then describe the learning ca-
pabilities and propose extensions to optimal and suboptimal
planning. We show how visualization can be achieved and
conclude with a brief summary of the contributions.

Domain Instantiation
PDDL planning task specifications usually consist of two
different text files: the uninstanciated problem independent
domain fileand the instance specificproblem file. In the do-
main file, parametric predicates and functions are declared,
as well as operators with precondition and effect lists. In
the problem file, we find the definition of objects and their
types, the initial state, the definition of the goal predicate,
and the plan object function to be optimized.

Problem Grounding is the process of finding (supersets
of) reachable actions, facts and fluents by instantiating
operators, predicates and functions with the objects that
come with the problem description. Most current plan-
ners perform some form of grounding to apply plan-
ning state space exploration. Exceptions are planners
like TLPlan (Bacchus and Kabanza 2000) that use a dis-
tributed state representation based on persistent search
trees, or SHOP (Nauet al. 1999) that performs unifica-
tion to bind actions (and methods) to states.

Knowledge Acquisition One of the most efficient meth-
ods to infer a grounded representation isfact space ex-
ploration (Edelkamp and Helmert 1999) that uses a fact
queue, in which the initial state is enqueued and where
one fact is dequeued and processed at a time. For all op-
erators that include this fact in the precondition list this
fact is marked. If all preconditions are marked, the op-
erator isfired, enqueuing all its add effects. Constant
predicates are detected and removed and constant fluents
are substituted to simplify numerical expressions. Quan-
tification, conditional effects, domain axioms in form of
derived predicates, numeric conditions and temporal op-
erators have been integrated into this process.

Knowledge Engineering The in- and output format of the
instantiation process itself is valid PDDL, so that the
grounded representation can be fed into every existing
planner by the domain expert. Even though the interme-
diate results might become large, it is important for the

expert to access the simplified state and operator descrip-
tors to understand the working of the plan engines.

To perform the grounding process in our workbench we
integrated three different technologies:translate, the in-
stantiation process that is provided with the plannerFast-
Downward(Helmert 2004),adl2strips, the domain transla-
tion that comes with the planner FF (Hoffmann and Nebel
2001), andground, the preprocessing result that is implicit
in the planner MIPS (Edelkamp 2003).

While translateand adl2stripsare capable of handling
complex ADL expression in propositional planning,ground
can deal with metric and durative domain formulations. As
adl2stripsprovides grounded PDDL Level 1 syntax, with
ground we contribute a tool to generate grounded PDDL,
Level 1-3 syntax. We newly implemented a translator that
convertstranslate’s outcome to PDDL, Level 1.

The grounded instance specific file is close to the original
one with object declaration omitted.

Domain Encoding
A pure propositional encoding can have efficiency draw-
backs during the exploration. A multivariate representation
for the atom set is often preferable. In theSAS+ encod-
ing (Helmert 2004), groups of mutually exclusive atoms are
generated. This encoding serves as an optional input for ex-
isting planners that can exploit this facility.

For the workbench we choose the multivariate SAS+ en-
coding oftranslateandground. The output file format for
this domain analysis step is a Lisp-like representation of
the set of reachable atoms and their partitioning into SAS+

variable domains. We plan to add the inference mecha-
nism of VAL (Fox and Long 1998), as new versions support
SAS+ encodings.

Inferring the minimal state description is complex. The
recursive approach of (Edelkamp and Helmert 1999) an-
alyzes the effects of operators to merge partial predicates
into exclusive groups, where a partial predicate is a predi-
cate projected all but one of its parameters. Merged predi-
cates are filled with the atoms from the result of fact space
exploration. As there can be many different possible merg-
ing, one may ask the domain expert for assistance to select
the ones that minimizes the encoding length.

For including knowledge acquisition and engineering op-
tions to this phase, however, we chose a different aspect.

Problem In planning with pattern databases (Edelkamp
2001), the automated selection of possible abstraction
functions to yield informative pattern databases is a hard
combinatorial task. This is especially true for the cre-
ation of disjoint databases (Korf and Felner 2002), in
which operator projections are void in all but one abstrac-
tion. In plannning, pattern database abstraction are most
effective if they consider SAS+ groups in common.



Knowledge Acquisition There are different bin-packing
approximation algorithms (Edelkamp 2001) that infer a
partitioning of variable groups before constructing the
databases. The maximum size of a pattern database is
bounded by the multiplication of the cardinalities of the
selected variable domains.

Knowledge Engineering Even though we are currently
working at a genetic algorithm to improve the first parti-
tion of groups, domain expert guidance in this optimiza-
tion process is crucial. The expert is asked to refine the
approximated, disjoint partitioning into planning pattern
databases proposed in the inference module, by modify-
ing the SAS+ partition for the different pattern databases
in an XML frontend.

Object Symmetry
Unless handled properly, symmetries cause an explosion in
the search space of the planners. Let(O, I,G) be a plan-
ning instance. A bijectionφ within the planning state space
is said to be asymmetryif φ(I) = I, φ(G) ∈ G for all
G ∈ G and for any statesu andv with an operator fromu
to v there exist an according operator fromφ(u) to φ(v).
Any setA of symmetries generates a subgroupg(A) called
a symmetry group. The subgroupg(A) induces an equiva-
lence relation∼A on states, defined asu ∼A v if and only
if φ(u) = v andφ ∈ g(A). Such an equivalence relation is
called asymmetry relationonP induced byA. The equiva-
lence class ofu is called theorbit of u and denoted as[u]A.
Any symmetry relation onP is a congruence onP. More-
over,u is reachable fromI if and only if [u]A is reachable
from [I]A. This reduces the search for goalG ∈ G to the
reachability of state[G]A.

Problem Finding symmetries fully automatically is not
easy, since it links to the computational hard problem
of graph isomorphism. Note that the general problem
of graph isomorphism is not completely classified. It is
expected not to be NP-complete (Wegener 2003). Some
complexity theoretic results are: if GI is NP-complete
thenΣ2 = Π2, GI has an interactive proof system with
2 communication rounds, and GI has an interactive proof
system with perfect zero knowledge property.

To explore a state space with respect to a state sym-
metry, the exploration engine additionally has to de-
termine a representative element for each equivalence
class. In most existing approaches (Rintanen 2003;
Lluch-Lafuente 2003; Gúeŕe and Alami 2001), symme-
tries are fully specified by the domain expert.

Some planners apply automatedobject symmetries(Fox
and Long 1999). Two objects are symmetrical, if they
can be changed in the current state without affecting
solvability and optimality in the remaining planning

problem. Such symmetries appear frequently in bench-
mark problems. For object symmetries, there is the addi-
tional problem, that symmetries may vanish or reappear
during the exploration.

Knowledge Acquisition The important observation is that
the domain file is transparent to object transpositions, so
that symmetry breaking is possible only with respect to
the current state and the goal specification. Forn objects
we haven! possible object permutations. Taking into ac-
count all type information reduces the number of all pos-
sible permutation ton!/(t1! · . . . · tk!). whereti is the
number of objects with typei, i ∈ {1, . . . , k}. To reduce
the number of potential symmetries to a tractable size we
restrict symmetries to object transpositions, for which we
have at mostn(n−1)/2 candidates. Including type infor-
mation this number further reduces to

∑k
i=1 ti(ti−1)/2.

For forward chaining planners we reduce the set of pos-
sible object symmetries to the ones valid in the goal.

We are currently implementing a knowledge acquisition
module that given a PDDL description file, prompts a
list of detected object transpositions to the domain ex-
pert. We next aim to provide tables e.g for all facts and
remaining object transpositions.

Knowledge Engineering The domain expert can delete or
modify inferred object symmetries and we may expect
him to add complex ones that the system connot infer.

Goal Ordering
Goal ordering is an essential part of accelerating solu-
tion finding in larger planning problems. It yields agoal
agenda(Koehler and Hoffmann 2000) denoting, in which
order goal predicates and conditions should be established.
It consists of a sequence of goals atomsG1, . . . , Gk with
Gi ⊂ Gi+1, i ∈ {1, . . . , k − 1}. Using a goal ordering,
the planning process for anyPlanner can be reduced as
follows. SetI0 = I andIi+1 = Planner(Ii,Gi). The
overall sequential plan is the concatenation of the individ-
ual ones. For example, the goal ordering agenda has im-
proved heuristic search planners like FF to circumvent mis-
guidance by the heuristic estimate value e.g. in Blockworld.
It also has laid the basis of the dramatic impact of con-
straint partitioned problem solving in SGPlan (Chen and
Wah 2004). The idea shares similarities withmacro prob-
lem solving(Korf 1985), in which operator sequences are
learned to be retrieved for sequentialized goal satisfaction.
Some goal ordering can yield fairly long plans (Lin 2001).

Problem Let (O, I,G) be a planning instance andp, q ∈
G. Furthermore, letsp,¬q be a planning state for whichp
has just been reached and in whichq does not hold. We
define theforced orderingp �f q if for all sp,¬q there is
no planP (O) for operator setO with q is the result of



applyingP (O) to sp,¬q. Moreover, thereasonable or-
dering p �r q is given if for all sp,¬q there is no plan
P (Op) for operator setOp with q is the result of apply-
ing P (Op) to sp,¬q. HereOp is the set of actions that
havep not in their delete list. Unfortunately, the decision
problems forp �f q andp �r q are both PSPACE hard.

Knowledge Acquisition We have implemented approxi-
mation�h of �r as an individual static analysis op-
tion. The algorithm prompts the outcome of this phase to
the domain expert so that he can refine the induced goal
agenda. If the agenda is fixed, a sequence of PDDL files
is generated wrapping any selected planning module.

Knowledge Enginering As finding thebestgoal ordering
is hard, we leave it to the domain expert to adjust the
approximated one. The inferenceIi+1 givenIi is trans-
parent to the expert, as it simulates plan execution within
the validator VAL (cf. section on plan validation and vi-
sualization). Using our extension to flush state sequences
according to plan happenings, we apply VAL toIi and
write the resultIi+1 together with goalGi+1 back to disk.

Operator Dependency
There are two main optimization metrics in planning, the
plan length(number of actions) and itsmakespan(mini-
mum parallel execution time). For propositional planning,
each operator is asserted to a duration of 1, so that the latter
corresponds to the minimal parallel plan length. To express
parallel plans, amutex relationof operators has to be pro-
vided, which in the case of metric planning, naturally ex-
tends to the standard mutex relation for STRIPS. It is more
complex as it additionally includes conflicts between nu-
merical variables. Two grounded operators aremutex, if
one of the following three conditions holds:

1. The precondition list of one operator has a non-empty
intersection with the add or delete lists of the other one.

2. The head of a numerical modifier of one operator is con-
tained in some condition of the other one.

3. The head of the numerical modifier of one operator is
contained in the body of the modifier of the other one.

For temporal planning withstart, invariant andendcon-
ditions/effects, we have eight different mutexes, i.e. start-
start, start-invariant, start-end, invariant-start, invariant-
end, end-start, end-invariant and end-end. If there is more
than one conflict for one operator pair, we have to compute
the maximum value derived for the individual conflicts.

The semantics of operator duration in PDDL2.1 demands
a slack ofε time steps between any two happenings that are
dependent. The default forε is 0.01. The idea is that if a
proposition or a numerical quantity is accessed by different
actions, some time for resolving has to pass.

Problem Optimizing of plans without precedence order-
ing is involved (B̈ackstr̈om 1998), since computing the
makespan for a set of operators is NP-complete.

Knowledge Acquisition However, given a sequence of
operators in a plan, a precedence ordering among them,
an optimal parallel plan that respects the given timing
constraints, is polynomially solvable. With PERT such a
plan can be computed in optimal time (Edelkamp 2003).
The approach extends to timed initial literals and ac-
tion execution time windows. For the sake of simplic-
ity we assume that each propositionp can be associated
to unique a time interval[tmin(p), tmax(p)], where it is
valid; tmin(p) is the time, whenp is initially set and
tmax(p) is the time, wherep is finally deleted. For or-
dinary propositions, the time intervall is[0,∞].

The execution time window[tmin, tmax] for an opera-
tor with propositional condition listPstart∪ Pinvariant∪
Pend is the intersection of the unrestricted interval
[0,∞], ∩p∈Pstart [tmin(p), tmax(p) + d], ∩p∈Pinvariant
[tmin(p), tmax(p)], and∩p∈Pend

[tmin(p)− d, tmax(p)],
whered is the duration of the operator.

Knowledge Engineering Operator dependency induces a
partial ordering in a sequence of actions. In order to de-
rive posterior schedules of sequential plans in temporal
planning, pairwise dependencies are precomputed and
made visible and accessible to the domain expert with
each computed plan. He may add or delete precedence
constraints before scheduling is performed.

Domain Inference
The previous mechanisms separate the knowledge acqui-
sition stage from the knowledge engeneering part, as the
domain expert refines a proposed solution to a hard com-
binatorial task. To infer operators within a PDDL domain
description, the inference mechanism needs supervision of
the domain expert.

Problem LearningPDDL domain specifications from plan
traces without any domain expert knowledge is a compu-
tationally challenging and practically infeasible task.

Knowledge Acquisition & Engineering We newly im-
plemented a supervised learning algorithm to interac-
tively infer the PDDL domain description.

We assume that a domain expert tries to infer a valid do-
main description from a set of operators that form a valid
plan. This plan can be generated in a previous run of a
planner. If we start from scratch, an initial sequence of
operators has to be provided manually. The additional
inputs of the algorithm are the prefixes of domain and
problem file, namely the declaration of objects, and the
set of predicates. If not already present, object type in-
formation may interactively be attached.



Figure 1: Input for the PDDL learning task.

Figure 2: Supervised input of action preconditions.

Given the set of operators in a valid plan (cf. Figure 1),
the designer is confronted with choice boxes on how the set
of preconditions and effects of an operator to be inferred
are composed (cf. Figures 2 and 3). The supervised PDDL
learning mechanism selects the operator to infer next and
steadily reduces the set of options until a domain model has
been established. For long plans, the inference task is al-
most fully automatic. The learning algorithm underneath
provides an slightly improved implementation of theOp-
makeralgorithm (McCluskeyet al. 2002). One of the dis-
tinctive features is the option to attach durations to actions
and to allowincremental learning, as the output of a plan-
ner can be used as input for another inference step.

Planning
As the intermediate results produced by the grounding pro-
cedures are valid PDDL files, any planner can be used as a
back-end solver. To push the development of planning tech-
nology and to highlight the applicability of our knowledge
engineering tool, we enlarged the set of existing planners

Figure 3: Supervised input of action effects and duration.

Figure 4: Inferred domain description.

by two different contributions: one optimal propositional
planner and one suboptimal metric and temporal solving
module. In our workbench, we have included a simple user
interface for both planners to selecte optional parameters.

Pattern-Plan

Current STRIPS planners are diverse in structure. While
most suboptimal planners use heuristic and/or local
search (Chen and Wah 2004), optimal planners range from
satisfiability solving (Kautz and Selman 1996) via con-
straint satisfaction (Rintanen and Jungholt 1999) over plan-
ning graph approaches (Blum and Furst 1995) to inte-
ger programming (Kautz and Walser 1999) and heursitic
search (Haslum and Geffner 2000; Edelkamp 2001). In our
new plannerPattern-Planwe focus on optimal (either sym-
bolic or explicit) pattern database planning, in particular in
cooperation with external search (Edelkamp 2005).

For the domain expert, we allow interactive pattern se-
lection in form of a partition of the SAS+ variables.



Durative-FF

Formetric planning, we implemented the PERT scheduling
approach (Edelkamp 2003) on top of Metric-FF (Hoffmann
2003) to generate parallel plans. We use posterior schedul-
ing for complete plans as well as for partial and relaxed
ones. Astemporal planningleads to plan schedules rather
than plan sequences, we have successfully lifted Metric-FF
to Durative-FF, a new planner that is capable of parsing
PDDL2.1 Level 3 and to apply PERT scheduling on top of
the set of generated plans. First results on the set of compe-
tition planning benchmarks are promising. As the approach
generalized totimed initial literals in form of action execu-
tion time windows (Edelkamp 2004a), we currently include
expressivity with this respect. By the choice of the under-
lying planner, however, generalizing the relaxed planning
heuristic tonon-linear tasks(Edelkamp 2004b) is involved.

For the domain expert, the operator dependency structure
can be changed prior to the PERT scheduling.

Plan Validation and Visualization
For plan validation we have included VAL (Howey and
Long 2003), as provided by the Strathclyde planning group.
The main capabilty of VAL is the simulation, i.e. the ex-
ecution of almost any plan in PDDL syntax. It has re-
cently been extended to capturecontinous effects, exoge-
nous eventsandprocesses.

Forplan visualizationwe included the animation system
Vega (Hipke 2000) allowing a magnification to an arbitrary
part of the plan. Vega is implemented as a Client-Server
architecture that runs an annotated algorithm on the server
side to be visualized on the client side in a Java frontend.
Annotation are visualization requests that (minorly) extend
the existing source code by (simple) commands likesend
point(x, y). In the system, visualization objects can be as-
sociated with hierarchical structured identifiers. The client
is used both as the user front-end and the visualization en-
gine. Thus, it allows server and algorithm selection, input
of data, running and stopping algorithms, and customiza-
tion of the visualization. It can be used to manipulate scenes
with hierarchically named objects, view algorithm lists at
the server and display algorithm information, control the al-
gorithm execution using a VCR-like panel or the execution
browser, adjust view attributes directly or using the object
browser, show several algorithms simultaneously in multi-
ple scenes and open different views for a single scene, load
and save single scenes, complete runs, and attribute lists
and export scenes inxfigor gif format.

Vega allows bothon-lineandoff-line presentations. The
main purpose of the server is to make algorithms accessible
through TCP/IP. The server is able to receive commands
from multiple clients at the same time. It allows the client
to choose from the list of available algorithms, to retrieve
information about the algorithm, to specify input data, to

Figure 5: Visualizing a plan in Gantt chart format.

start it and to receive output data. The server maintains a list
of installed algorithms. This list may be changed without
stopping and restarting the server.

Gantt chartsare plots for temporal plans, in which a hor-
izontal open oblong is drawn against each activity indicat-
ing estimated duration. To access precise e.g. temporal
information on the operators representatives can selected
with the mouse. Our visualization module depicts the Gantt
chart of plans incompetition format. An example is pro-
vided in Figure 5. As the essence of the task is translating
temporal operators into rectangles and associated text la-
bels, for all planners in the 2004 competition, we provide
their results in Vega’s text input format. For using it as a
wrapper module the domain expert may choose the plan-
ner, the domain, and the problem file. Instead of calling
different planners to Vega, we encounter that the simplest
option to visualized plans is to convert plans in competition
format into Vega scenes with an individual program. Using
this option, we were able to visualize all plans generated at
the 2004 planning competition in a scalable Gantt chart.

Domain-dependent visualization is more challenging. As
the semantics of predicates are not known in advance, do-
main experts assist the animation design. From a knowl-
edge engineering aspect, the efforts have to be as small as
possible. Based on flushing sequential operator trails to-
gether with their corresponding state sequence, we have
written instance-independentvisualizations for all 2002
competition domains (see Figure 6 for an example), all
with less than a hundred lines of code. The list includes
BlocksWorld, DriverLog, Satellite, Taxi, Depots, FreeCell,
DesertRats, Jugs, Rover, Settlers, andZenoTravel. Proposi-
tional atoms can often be illustrate by showing or hiding an



Figure 6: Animation of a plan.

image at a certain location, while numerical quantities such
as fuel can best be expressed by using scalable graphical
items. The according figures for displaying domain objects
are collected with an image web search engine.

Previously, the visualizer worked in cooperation with
a planner extension that wrote (sequential) plans together
with associated state information to disk. Currently, we
exploit VAL’s capabilities to allow visualization of parallel
and temporal plan execution. For this purpose, we extended
the validator to flush a sequence of states at eachhappening
together with its time stamp for further post-processing.

Conclusion
With ModPlan we have seen a feasible and practical ap-
proach for an integrated environment including domain
modeling, static analyzes, plan finding, plan validation, and
plan visualization. It features different knowledge acquisi-
tion and engineering facilities.

In our setting,knowledgerefers to an algorithmic insight
that is made accessible to and is subject to changes by the
domain expert. In essence, knowledge engineering tackles
hard combinatorial problems with a domain expert interact-
ing with the system to ease solution finding.

Except for PDDL inference, we allow but do not rely on
expert knowledge. We simplified domain design by offer-
ing an interactive operator learning module. We included
front-ends to the knowledge that is inferred by static anal-
ysers, yieling grounded and annotated PDDL, to be ex-
ploited by different plan engines. Additionally, we have
contributed two new planners: a suboptimal one based on
PERT scheduling that covers a large fraction of PDDL2.2,
and an optimal one based on pattern databases for proposi-
tional planning problems in SAS+ encoding.

As indicated in the introduction, there are other chal-
lenges that could be made accessible to domain experts for
improving approximation results in domain-independent
planning. For example, we have not realized the usage
of control rulesto prune exploration especially in forward-
chaining planners that perform a synchronized exploration
of the state space and progressed expressions in temporal
logic. Other extensions include exports to different e.g.
model checking tools.

AcknowledgementsModPlanis being developed at the
University of Dortmund within an undergraduate student
project group. Thanks to Edina Kurtic, Miriam Bützken,
Andrea Matuszewski, Rachid Karmouni, Michael Nels-
kamp, Arne Wiggers, Abdelaziz Elalaoui, Khalid Lahiane,
Mohammed Nazih, Kenneth Kahl, Roman Klinger, and
Abubakr Mkhdramine for all their implementation effort
Moreover, we are grateful to Björn Scholz and Shahid Jab-
bar for improving the vizualization of plans and to Malte
Helmert for providing access totranslate. The work is sup-
ported by DFG in the projects Ed 74/2 and 74/3.

References
F. Bacchus and F. Kabanza. Using temporal logics to ex-
press search control knowledge for planning.Artificial
Intelligence, 116:123–191, 2000.

F. Bacchus. The AIPS’00 planning competition. 22(3):47–
56, 2001.

C. Bäckstr̈om. Computational aspects of reordering
plans. Journal of Artificial Intelligence Research, 9:99–
137, 1998.

A. Blum and M. L. Furst. Fast planning through planning
graph analysis. InIJCAI, pages 1636–1642, 1995.

A. Botea, M. Müller, and J. Schaeffer. Learning partial-
order macros from solutions. InICAPS, 2005. To apppear.

Y. Chen and B. W. Wah. Subgoal partitioning and res-
olution in planning. InProceedings of the International
Planning Competition, 2004.

S. Edelkamp and M. Helmert. Exhibiting knowledge in
planning problems to minimize state encoding length. In
ECP, pages 135–147, 1999.

S. Edelkamp and J. Hoffmann. PDDL2.2: The language
for the classical part of the 4th international planning com-
petition. Technical Report 195, University of Freiburg,
2004.

S. Edelkamp, J. Hoffmann, M. Littman, and H. Younes,
editors. Proceedings of the International Planning Com-
petition. JPL, 2004.

S. Edelkamp. Planning with pattern databases. InECP,
pages 13–24, 2001.



S. Edelkamp. Taming numbers and durations in the model
checking integrated planning system.Journal of Artificial
Research, 20:195–238, 2003.

S. Edelkamp. Extended critical paths in temporal plan-
ning. In Proceedings ICAPS-Workshop on Integrating
Planning Into Scheduling, 2004.

S. Edelkamp. Generalizing the relaxed planning heuristic
to non-linear tasks. InKI, 2004. 198–212.

S. Edelkamp. External symbolic heuristic search. In
ICAPS, 2005. To appear.

M. Fox and D. Long. The automatic inference of state
invariants in TIM.Artificial Intelligence Research, 9:367–
421, 1998.

M. Fox and D. Long. The detection and exploration of
symmetry in planning problems. InIJCAI, pages 956–
961, 1999.

M. Fox and D. Long. PDDL2.1: An extension to PDDL
for expressing temporal planning domains.Journal of Ar-
tificial Intelligence Research, 2003.

A. Gerevini and L. Schubert. Discovering state constraints
in DISCOPLAN: Some new results. InAAAI, pages 761–
767, 2000.

E. Gúeŕe and R. Alami. One action is enough to plan. In
IJCAI, 2001.

P. Haslum and H. Geffner. Admissible heuristics for opti-
mal planning. InAIPS, pages 140–149, 2000.

P. Haslum and P. Jonsson. Planning with reduced operator
sets. InAIPS, pages 150–158, 2000.

M. Helmert. A planning heuristic based on causal graph
analysis. InICAPS, pages 161–170, 2004.

C. A. Hipke. Distributed Visualization of Geometric Al-
gorithms. PhD thesis, University of Freiburg, 2000.

J. Hoffmann and B. Nebel. Fast plan generation through
heuristic search. Journal of Artificial Intelligence Re-
search, 14:253–302, 2001.

J. Hoffmann, R. Englert, F. Liporace, S. Thiebaux, and
S. Tr̈ug. Towards realistic benchmarks for planning: the
domains used in the classical part of IPC-4.Journal of
Artificial Intelligence Research, 2005. Submitted.

J. Hoffmann. The Metric FF planning system: Translat-
ing “Ignoring the delete list” to numerical state variables.
Journal of Artificial Intelligence Research, 20:291–341,
2003.

R. Howey and D. Long. VAL’s progress: The automatic
validation tool for PDDL2.1 used in the international plan-
ning competition. InICAPS-workshop on the Competi-
tion, 2003.

H. Kautz and B. Selman. Pushing the envelope: Planning
propositional logic, and stochastic search. InAAAI, pages
1194–1201, 1996.

H. Kautz and J. Walser. State-space planning by integer
optimization. InAAAI, 1999.

J. Koehler and J. Hoffmann. On reasonable and forced
goal orderings and their use in an agenda-driven planning
algorithm. Journal of Artificial Intelligence Research,
12:338–386, 2000.

R. E. Korf and A. Felner. Chips Challenging Champi-
ons: Games, Computers and Artificial Intelligence, chap-
ter Disjoint Pattern Database Heuristics, pages 13–26. El-
sevier, 2002.

R. E. Korf. Macro-operators: A weak method for learning.
Artificial Intelligence, 26:35–77, 1985.

F. Lin. System R.AI-Magazine, pages 73–76, 2001.

A. Lluch-Lafuente. Symmetry reduction and heuristic
search for error detection in model checking. InMoChArt,
2003.

D. Long and M. Fox. Automatic synthesis and use of
generic types in planning. InAIPS, pages 196–205, 2000.

D. Long and M. Fox. Hybrid stan: Identifying and manag-
ing combinatorial optimisation sub-problems in planning.
In IJCAI, pages 445–452, 2001.

D. Long and M. Fox. The 3rd international planning com-
petition: Overview and results.Journal of Artificial In-
telligence Research, 20, 2003. Special issue on the 3rd
International Planning Competition.

T. L. McCluskey, N. E. Richardson, and R. M. Simpson.
An interactive method for inducing operator descriptions.
In AIPS, 2002.

D. McDermott. The 1998 AI Planning Competition.AI
Magazine, 21(2), 2000.

D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. SHOP:
simple hierarchical ordered planner. InIJCAI, pages 968–
973, 1999.

J. Rintanen and H. Jungholt. Numeric state variables in
constraint-based planning. InECP, pages 109–121, 1999.

J. Rintanen. An iterative algorithm for synthesizing invari-
ants. InAAAI, pages 806–811, 2000.

J. Rintanen. Symmetry reduction for SAT representations
of transition systems. InICAPS, 2003.

I. Wegener.Komplexiẗatstheorie. Springer, 2003. (in Ger-
man).


