
ARMS: Action-Relation Modelling System for Learning Action Models

Kangheng Wu 1,2, Qiang Yang1 and Yunfei Jiang2

1Department of Computer Science, Hong Kong University of Science and Technology, Hong Kong
2Software Institute, Zhongshan University, Guangzhou, China
khwu@cs.ust.hk, qyang@cs.ust.hk and lncsri05@zsu.edu.cn

Abstract

We present a system for automatically discovering ac-
tion models from a set of successful observed plans. AI
planning requires the definition of an action model us-
ing a language such as PDDL as input. However, build-
ing an action model from scratch is a difficult and time-
consuming task even for experts. Unlike the previous
work in action-model learning, ARMS does not assume
complete knowledge of states in the middle of the ob-
served plans; in fact, our approach would work when no
or partial intermediate states are given. These example
plans are obtained by an observation agent who does
not know the logical encoding of actions and the full
state information between actions. In a real world ap-
plication, the cost is prohibitively high in labelling the
training examples by manually annotating every state in
a plan example from snapshots of an environment. To
learn action models, ARMS gathers knowledge on the
statistical distribution of frequent sets of actions in the
example plans. It then builds a weighted propositional
satisfiability (Weighted SAT) problem and solves it us-
ing a weighted MAX-SAT solver. We lay the theoretical
foundations of the learning problem and evaluate the ef-
fectiveness of ARMS empirically.

Introduction
AI planning systems require the definition of an action
model, an initial state and a goal to be provided as input.
In the past, various action modelling languages have been
developed. Some examples are the STRIPS language (Fikes
& Nilsson 1971), ADL language (Pednault 1986) and PDDL
language (Ghallab et al. ; Fox & Long 2003). With these
languages, a domain expert sits down and analyzes a collec-
tion of the observed plans, then writes a complete set of do-
main action representations. These representations are then
used by planning systems as input to generate plans.

However, building an action model from scratch is a task
that is exceedingly difficult and time-consuming even for do-
main experts. Because of the difficulty, various approaches
(Wang 1995) have been explored to learn action models
from plans. A common feature of these works is requiring
states just before or after each action to be known. Statisti-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

cal and logical inferences can then be made to learn actions’
preconditions and effects.

In this competition, we take one step toward in the di-
rection of learning action models from observed plans with
partial information. The resultant algorithm is called ARMS
, which stands for Action-Relation Modelling System (Yang,
Wu, & Jiang 2005). We assume that each observed plan
consists of a sequence of action names together with their
parameters and the initial states and goal conditions. We as-
sume that the intermediate states between actions are only
partially known; that is, between every adjacent pair of ac-
tions, the truth of a literal can be unknown. Thus, it is pos-
sible that any intermediate state is completely unknown to
us. Suppose that we have several observed plans as input.
From this incomplete knowledge, our system automatically
guesses a minimal logical action model that can explain
most of the observed plans. This action model is not guaran-
teed to be completely correct, but we hope that it serves as
an add-on component for the knowledge editors which can
provide advice for human users, such as GIPO (McCluskey,
Liu, & Simpson 2003)

Consider a simple example in the depots problem,
as three observed plans in Table 1. Any literal such as
(on c0 p0) in the goal conditions might be established by
the first action, the second, or any of the rest. We wish to
learn the preconditions, add and delete lists of all actions to
explain these observed plans. It is this uncertainty that gives
difficulty to previous approaches. In contrast to the previous
approaches, from these example plans, our algorithm gener-
ates a good possible model in which the actions’ precondi-
tions, add and delete lists are filled. An example output for
the (load x y z p) operator is:

action load(x - hoist y - crate z - truck p - place)
pre: (at x p), (at z p), (lifting x y)
add: (in y z), (available x)
del: (lifting x y)

The design of ARMS is motivated by the fact that in many
cases, it is possible for an onlooker to observe and record
the sequences of agents’ action names in a task domain,
but to encode these actions logically is much harder. An
agent’s plans can be automatically recorded by various sen-
sors attached to the agent and by a sensor network dis-
tributed in the environment. Plans can also be made avail-

Table 1: Three plan examples
Plan1 Plan2 Plan3

Initial I1 I2 I3
1 (lift h1 c0 p1 (lift h1 c1 (lift h2 c1 c0

ds0), (drive c0 ds0) ds0)
t0 dp0 ds0)

State (lifting h1 c1)
2 (load h1 c0 (load h1 c1 (load h2 c1 t1

t0 ds0) t0 ds0) ds0)
3 (drive t0 ds0 (lift h1 c0 (lift h2 c0 p2

dp0) p1 ds0) ds0), (drive t1
ds0 dp1)

State (available h1)
4 (unload h0 (load h1 c0 (unload h1 c1

c0 t0 dp0) t0 ds0) t1 dp1), (load
h2 c0 t0 ds0)

State (lifting h0 c0)
5 (drop h0 c0 (drive t0 (drop h1 c1 p1

p0 dp0) ds0 dp0) dp1), (drive t0
ds0 dp0)

6 (unload h0 (unload h0 c0
c1 t0 dp0) t0 dp0)

7 (drop h0 c1 (drop h0 c0 p0
p0 dp0) dp0)

8 (unload h0
c0 t0 dp0)

9 (drop h0 c0
c1 dp0)

Goal (on c0 p0) (on c1 p0) (on c0 p0)
State (on c0 c1) (on c1 p1)

I1 : (at p0 dp0), (clear p0), (available h0), (at h0 dp0), (at t0
dp0), (at p1 ds0), (clear c0), (on c0 p1), (available h1), (at
h1 ds0)
I2 : (at p0 dp0), (clear p0), (available h0), (at h0 dp0), (at t0
ds0), (at p1 ds0), (clear c1), (on c1 c0), (on c0 p1),
(available h1), (at h1 ds0)
I3 : (at p0 dp0), (clear p0), (available h0), (at h0 dp0), (at
p1 dp1), (clear p1), (available h1), (at h1 dp1), (at p2 ds0),
(clear c1), (on c1 c0), (on c0 p2), (available h2), (at h2 ds0),
(at t0 ds0), (at t1 ds0)

able through a textual descriptions of the steps in a task
domain; for example the Web site www.ehow.com provides
step-by-step instructions on how to fix an automobile, and
www.epicurious.com provides step-by-step recipes. Finally,
the plan examples can be provided by a domain expert, who
may find it much easier to simply inform us what to do, with-
out telling us the precise reasons for why each step is taken.
It is thus intriguing to ask whether we could intelligently
guess, or approximate, an action model in an application do-
main if we are only given a set of recorded action occur-
rences but partial or even no intermediate state information.
In this competition, we take a first step to answer this ques-
tion by presenting a learning system.
ARMS proceeds in two phases. In phase one of the algo-

rithm, ARMS finds the frequent action sets from plans that
share a common set of parameters. In addition, ARMS finds
some frequent predicate-action relations with the help of the

initial state, the goal state and the partial intermediate states.
These predicate-action relations give us an initial guess at
the preconditions, add lists and delete lists of actions in this
subset. These action subsets and relations are used to obtain
a set of constraints that must hold in order to make the plans
correct. In phase two, we transform the constraints extracted
from the plans into a weighted SAT representation (Borchers
& Furman 1999), solve it, and produce an action model from
the solution of the SAT problem. The process iterates until
all actions are modelled.

For a reasonably large set of training observed plans, the
corresponding SAT representation is likely to be too com-
plex to be solved efficiently. In response, we provide a
heuristic method for modelling the actions approximately,
and measure the correctness of the model using the error
and redundancy rates. We present a cross-validation method
for evaluating the learned action model against different ex-
perimental parameters such as the size and the number of
plans.

The rest of the paper is organized as follows. The next
section discusses related work in more detail. This is fol-
lowed by the algorithm description. In the experiments sec-
tion, we develop a cross-validation evaluation strategy for
our learned action models and test our algorithm in several
different domains. We conclude in the last section with a
discussion of future work.

Related Work
The problem of learning action descriptions is important in
AI Planning. As a result, several researchers have studied
this problem in the past. In (Wang 1995), (Oates & Co-
hen 1996) and (Gil 1994), a partially known action model
is improved using knowledge of intermediate states between
pairs of actions in a plan. These intermediate states pro-
vide knowledge for which preconditions or post-conditions
may be missing from an action definition. In response, revi-
sion of the action model is conducted to complete the action
models. In (Wang 1995) an STRIPS model is constructed
by computing the most specific condition consistent with
the observed examples. In (Shen 1994) a decision tree is
constructed from examples in order to learn preconditions.
However, these works require there to be an incomplete ac-
tion model as input, and learning can only be done when the
intermediate states can be observed.

In (Sablon & Bruynooghe 1994) an inductive logic pro-
gramming (ILP) approach is adopted to learn action models.
Similarly, in (Benson 1995), a system is presented to learn
the preimage or precondition of an action for a TOP operator
using ILP. The examples used require the positive or nega-
tive examples of propositions held in states just before each
action’s application. This enables a concept for the preim-
age of an action to be learned for each state just before that
action. ILP can learn well when the positive and negative
examples of states before all target actions are given. Even
though one can still use logical clauses to enumerate the dif-
ferent possibilities for the precondition, the number of such
possibilities is going to be huge. Our SAT-based solution
provides an elegant control strategy for resolving ambigui-
ties within such clauses.

Another related thrust adopts an approach of knowledge
acquisition, where the action model is acquired by interact-
ing with a human expert (Blythe et al. 2001). Our work
can be seen as an add-on component for such knowledge
editors which can provide advice for human users, such as
GIPO (McCluskey, Liu, & Simpson 2003). The DISTILL
system (Winner & Veloso 2002) which is a method to learn
program-like plan templates from example plans and shares
similar motivation with our work.

In propositional logic, the satisfiability (SAT) problem
is aims to find an assignment of values to variables that
can satisfy a collection of clauses. If it fails to do so, the
SAT solvers will give an indication that no such assign-
ment exits (Moskewicz et al. 2001; Kautz & Selman 1996;
Zhang 1997). Each clause is a disjunction of literals, where
each of which is a variable or its negation. There are many
local search algorithms for the satisfiability problem. The
weighted MAX-SAT solvers assign a weight to each clause
and seeks an assignment that maximizes the sum of the
weights of the satisfied clauses (Borchers & Furman 1999).

The ARMS Algorithm
In this competition, we will learn a PDDL (level 1, STRIPS)
representation of actions from the observed plans. The in-
put to the algorithm is a set of the observed plan examples,
where each plan consists of (1) a list of propositions in the
initial state, (2) a list of propositions that hold in the goal
state, (3) a list of partial intermediate observed states, and
(4) a sequence of observed action names and instantiated pa-
rameters. For simplicity, we use αinit to represent the initial
state and αgoal to represent the goal state in a plan.

Our ARMS algorithm is iterative, where in each iteration,
a selected subset of actions in the training plan examples are
learned. An overview of our algorithm is as follows:
Step 1 We first convert all action instances to their schema

forms by replacing all constants by their corresponding
variable types. Let Λ be the set of all incomplete action
schemata. Initialize the action modelΘ by the set of com-
plete action schemata; this set is empty initially if all ac-
tions need to be learned.

Step 2 Build a set of predicate and action constraints based
on individual actions and call it Ω. Apply a frequent-set
mining algorithm to find the frequent sets of related ac-
tions and predicates (see the next subsection). Here re-
lated means the actions and predicates must share some
common parameters. Let the frequent set of action-
predicate relations be Σ.

Step 3 Build a weighted maximum satisfiability representa-
tion Γ based on Ω and Σ.

Step 4 Solve Γ using a weighted MAXSAT solver 1.
Step 5 Select a set A of solved actions in Λ with the high-

est weights. Update Λ by Λ − A. Update Θ by adding
A. Update the frequent sets Σ by removing all relations
involving only complete action models. Update the initial
states of all plan examples by executing the action set A.
If Λ is not empty, go to Step 2.
1http://www.nmt.edu/ borchers/maxsat.html

Step 6 Output the action model Θ.

The algorithm starts by initializing a set of action
schemata yet to be explained. Subsequently, it iteratively
builds a weighted MAXSAT representation and solves it.
Each time a few more actions are explained, which are used
to build new initial states. ARMS terminates when all actions
in the example plans are learned. As a result, the actions
of all plans examples are learned in a left-to-right sweep if
we assume the plans begin on the left and end on the right,
without skipping any incomplete actions in between. In this
way, every time Step 2 is re-encountered, a new set of initial
states is constructed by executing the newly learned actions
in their corresponding initial states.

Step 1: Initialize Plans and Variables
An observed plan example consists of a set of proposition
and action instances. Each action instance represents an ac-
tion with some instantiated objects. We convert all plans by
substituting all occurrences of an instantiated object in ev-
ery action instance with the same variable parameter. If the
object has multiple types, we generate a clause to represent
each possible type for the object. For example, if an ob-
ject o has two types Block and Table, the clause becomes:
{(o = Block) or (o = Table)}. The two nearby actions are
connected with the parameter-connector set, which is a list
of pairs linking a parameter in one action to a parameter in
another action.

Step 2: Build Action, Information and Plan
Constraints
A weighted MAXSAT consists of a set of clauses repre-
senting their conjunction(Borchers & Furman 1999). Each
clause represents a constraint that should be satisfied. The
weights associated with a clause represents the degree in
which we wish the clause to be satisfied. Given a weighted
MAXSAT problem, a SAT solver finds a solution by maxi-
mally satisfying all the clauses with high weight values. In
the ARMS system, we have four kinds of constraints to sat-
isfy, representing four types of clauses. They are predicate,
action, information and plan constraints. The predicate con-
straints are derived from statistics directly (see Step 3).

Action Constraints The second type of clauses in a SAT
represents the requirement of individual actions. These con-
straints make the learning problem reasonable for the gen-
eral action definitions, but not for the special cases. Here
we define a predicate to be relevant to an action when they
share a parameter. Let prei, addi and deli represent ai’s
precondition list, add-list and del-list. These general action
constraints are translated into the following clauses:

1. (Constraint A.1) Every action ai in a plan must add a rel-
evant predicate for the precondition of a later action aj in
the plan at least; this predicate is known as a primary ef-
fect of an action (Fink & Yang 1997). If a predicate does
not share any parameter with any primary effect and any
precondition list of action goal, then the predicate is not
in its add and delete lists. Let par(pk) be the predicate
pk’s parameters and prii be the ai’s primary effects.

(par(pk)∩par(prii) = φ) ∧ (par(pk)∩par(pregoal) =
φ)⇒ pk /∈ addi ∧ pk /∈ deli

2. (Constraint A.2) Every action’s add list cannot negate
predicates that appear in the precondition list. The in-
tersection of the precondition and add lists of all actions
must be empty.
prei ∩ addi = φ.

3. (Constraint A.3) If an action’s del list includes a predicate,
this predicate is assumed to be needed by an instance of
the action, that is, an action’s precondition includes the
predicate.
deli ⊆ prei.

Example 1 Consider the action (load x - hoist y - crate z
- truck p - place) in Table 1, the possible predicates of the
action (load x y z p) are (at x p), (available x), (lifting x y),
(at y p), (in y z), (clear y), and (at z p). The precondition list
pregoal of action goal consists of (on y - crate s - surface).
Suppose that its primary effect is (in y z). From this action
(load x y z p), the SAT clauses are as follows:
• A possible precondition list includes all of the possible

predicates that are joined by a disjunction. From A.1
above, the possible predicates of the add and delete list
are (lifting x y), (at y p), (in y z), (clear y), or (at z p).

• A.2 can be encoded as the conjunction of the following
clauses:(1) (lifting x y)∈ addi ⇒ (lifting x y)/∈ prei, (2)
(at y p)∈ addi ⇒ (at y p)/∈ prei, (3) (in y z)∈ addi ⇒
(in y z)/∈ prei, (4) (clear y)∈ addi ⇒ (clear y)/∈ prei,
(5) (at z p)∈ addi ⇒ (at z p)/∈ prei, (6) (lifting x y)∈
prei ⇒ (lifting x y)/∈ addi, (7) (at y p)∈ prei ⇒ (at y
p)/∈ addi, (8) (in y z)∈ prei ⇒ (in y z)/∈ addi, (9) (clear
y)∈ prei ⇒ (clear y)/∈ addi, (10) (at z p)∈ prei ⇒ (at z
p)/∈ addi.

• A.3 can be encoded as the conjunction of the following
clauses: (1) (lifting x y)∈ deli ⇒ (lifting x y)∈ prei, (2)
(at y p)∈ deli ⇒ (at y p)∈ prei, (3) (in y z)∈ deli ⇒ (in
y z)∈ prei, (4) (clear y)∈ deli ⇒ (clear y)∈ prei, (5) (at
z p)∈ deli ⇒ (at z p)∈ prei

Information Constraints The third type of constraint is
used to explain why the observed intermediate states exist
in a plan. Suppose we observe a proposition p between two
actions an and an+1, and p, ai1,..., and aik share the same
constant parameters, we can present the facts by the follow-
ing clauses. ai1,...,and ajk appear in the plan’s partial order.

• (Constraint I.1) The predicates p must be generated by
one action aik(0 ≤ ik ≤ n) at least, that is, p is selected
to be in the add-list of aik. p ∈ (addi1∪addi2∪...∪addik)

• (Constraint I.2) The last action aik must not delete the
predicate p, that is, p must not be selected to be in the del
list of aik. p /∈ delik

Example 2 Consider the intermediate state (lifting h0 c0)
in Plan 1 in Table 1, it can be generated by the ac-
tions (lift h1 c0 p1 ds0), (load h1 c0 t0 ds0) or
(unload h0 c0 t0 dp0). But it cannot be deleted by (unload
h0 c0 t0 dp0). The SAT clauses are as follows:

• (I.1) (lifting x y) ∈ (addlift ∪ addload ∪ addunload)

• (I.2) (lifting x y) /∈ delunload

Plan Constraints The fourth type of constraint represents
the relationship between actions in a plan to ensure that a
plan is correct. Since the relations explain why two actions
co-exist, and such pairs are generally overwhelming in a set
of plans, as a heuristic we wish to restrict ourselves to only
a small subset of frequent action pairs. Therefore, we ap-
ply a frequent-set mining algorithm from data mining in or-
der to obtain a set of frequent action pairs and predicate-
action triples from the plan examples. In particular, we ap-
ply the Apriori algorithm (Agrawal & Srikant 1994) to find
the ordered action sequences < ai, ai+1, ..., ai+n > where
ai+j(0 ≤ j ≤ n) appears in the plan’s partial order. The
prior probability (also known as support in data mining lit-
erature) of action sequences < ai, ai+1, ..., ai+n > in all
plan examples is no less than a certain probability threshold
θ (known as the minimum support in data mining). We do
not suffer the problem of the generating too many redundant
association rules as in data mining research, since we only
apply the Apriori algorithm to find the frequent pairs; these
pairs are to be explained by the learning system later. In the
experiments, we will vary the value of θ to verify the effec-
tiveness of algorithm. When consider subsequences of ac-
tions from example plans, we only consider those sequences
whose supports are over θ.

For each pair of actions in a frequent sequence of actions,
we generate a constraint to encode one of the following sit-
uations. These are called plan constraints:
• (Constraint P.1) One of the relevant predicates p must be

selected to be in the preconditions of both ai and aj , but
not in the delete list of ai,
∃p (p ∈ (prei ∩ prej) ∧ p /∈ (deli))

• (Constraint P.2) The first action ai adds a relevant predi-
cate that is in the precondition list of the second action aj

in the pair,
∃p (p ∈ (addi ∩ prej))

• (Constraint P.3) A relevant predicate p that is deleted by
the first action ai is added by aj . The second clause is
designed for the event when an action re-establishes a fact
that is deleted by a previous action.
∃p (p ∈ (deli ∩ addj))

The above three plan constraints can be combined into
one constraint Φ(ai, aj) in ARMS . Φ(ai, aj) is restated
as:
∃p ((p ∈ (prei ∩ prej) ∧ p /∈ (deli)) ∨ (p ∈ (addi ∩
prej)) ∨ (p ∈ (deli ∩ addj)))

• (Constraint P.4) In the general case when n is greater
than one, for each sequence of actions in the set of fre-
quent action sequences, we generate a constraint to en-
code the following situation. The conjunction of every
constraint from every pair of actions < ai, ai+1 > in
the sequence < ai, ai+1, ..., ai+n > must be satisfied.
Φ(ai, ai+1, ..., ai+n) can be restated as:
Φ(ai, ai+1) ∧ Φ(ai+1, ai+2) ∧ ... ∧ Φ(ai+n−1, ai+n)

Example 3 Suppose that ((lift x - hoist y - crate z - surface
p - place), (load x - hoist y - crate z - truck p - place), 0) is a

frequent pair. The relevant parameter is x-x, y-y, p-p. Thus,
these two actions are possibly connected by predicates (at x
p), (available x), (lifting x y), (at y p), and (clear y). From
this pair, the SAT clauses are as follows:

• At least one predicate among (at x p), (available x), (lift-
ing x y), (at y p), and (clear y) are selected to explain the
connection between (lift x y z p) and (load x y z p).

• If f(x) (f(x) can be (at x p), (available x), (lifting x y),
(at y p), and (clear y)) connects (lift x y z p) to (load x y z
p), then either (a) f(x) is in the precondition list of action
(load x y z p) and the add list of (lift x y z p), (b) f(x) is in
the delete list of action (lift x y z p) and add list of (load x
y z p), or (c) f(x) is in the precondition list of action (lift
x y z p), but not in the del list of action (lift x y z p), and in
the precondition list of (load x y z p).

Step 3: Build a Weighted MAXSAT
In solving a weighted MAXSAT problem in Step 3, each
clause is associated with a weight value between zero and
one. The higher the weight, the higher the priority in satis-
fying the clause. In assigning the weights to the four types
of constraints in the weighted MAXSAT problem, we apply
the following heuristics:

1. Predicate Constraints. We define the probability of a
predicate-action-schema pair as the occurrence probabil-
ity of this pair in all plan examples. If the probabil-
ity of a predicate-actin pair is higher than the probabil-
ity threshold θ, the corresponding constraint receives a
weight value equal to its prior probability. If not, the cor-
responding predicate constraint receives a constant weight
of a lower value which is determined empirically (see the
experimental section).

Example 4 As an example, consider the example in Ta-
ble 1. A predicate-action pair (clear c0),(lift h1 c0 p1 ds0)
(sharing a parameter {c0}) from Plan1 and predicate-
action pair (clear c1),(lift h1 c1 c0 ds0) (sharing a pa-
rameter {c1}) from Plan2 can be generalized to (clear
y)∈ prelift (labelled with {y}). Thus, the support for
(clear y), (lift x y z p) with the parameter label y is at
least two. Table 2 shows all predicate constraints along
with their support values in the previous example.

Table 2: Examples of All Supported Predicate Constraints
Label Predicate Constraints Support
{y} (clear y)∈ prelift 3
{x, p} (at x p) ∈ prelift 3
{x } (available x) ∈ prelift 3
{z, p} (at z p) ∈ prelift 3
{y, p} (at y p) ∈ prelift 3
{y, z} (on y z) ∈ prelift 3
{x, y} (at x y) ∈ predrive 1
{y, z} (on y z)∈ adddrop 3

2. Action Constraints. Every action constraint receives a
constant weight. The constant assignment is empirically

determined too, but they are generally higher than the
predicate constraints.

3. Information Constraints. Every partial information con-
straint receives a constant weight. The constant assign-
ment is empirically determined too, but they are generally
highest in the constraints’ weights.

4. Plan Constraints. The probability of a plan constraint,
which is higher than the probability threshold (or a mini-
mal support value) θ, receives a weight equal to its prior
probability. We do not suffer the problem of the genera-
tion too many redundant association rules as in data min-
ing research, since we only apply the Apriori algorithm to
find the frequent pairs; these pairs are to be explained by
the learning system later.

Example 5 Consider the example in Table 1. An action se-
quence (lift h1 c0 p1 ds0), (load h1 c0 t0 ds0) (sharing
parameters {h1, c0, ds0 }) from Plan1 and action sequence
(lift h1 c1 c0 ds0), (load h1 c1 t0 ds0) (sharing parameters
{h1, c1, ds0 }) from Plan2 can be generalized to (lift x y z p),
(load x y z p) (labelled with {y-y, p-p}). The connecter {y-y,
p-p} represents the two parameters y and p in action (lift x
y z p) are the same as the two parameters y and p in action
(load x y z p), respectively. Thus, the support for (lift x y z
p), (load x y z p) with the parameter label {y-y, z-z, p-p} is
at least two. Table 3 shows all plan constraints along with
their support values.

Table 3: Examples of All Action Constraints
Label Plan Constraints Support

{y-y, p-p} Φ(lift, load) 5
{z-x, p-y} Φ(load, drive) 4
{x-z, z-p} Φ(drive, unload) 4
{y-y, p-p} Φ(unload, drop) 5
{x-x, p-p} Φ(load, lift) 2
{x-x, p-p} Φ(drop, unload) 1
{x-z, z-p} Φ(drive, load) 1
{y-p} Φ(drive, load) 1
{p-p-y } Φ(lift, load, drive) 4
{z-x-z } Φ(load, drive, unload) 4
{z-p-p } Φ(drive, unload, drop), 4
{p-p-p-y} Φ(load, lift, load, drive) 2
{z-p-p-p } Φ(drive, unload, drop, unload) 1

Step 5: Update Initial States and Plans
To learn more about the heuristic weights for the predicate
constraints in the weighted SAT problem, ARMS obtains fre-
quent sets of related action-predicate pairs. So ARMS select
a set A of solved actions in the set of all incomplete actions
Λ with the highest weights. It then updates Λ by Λ−A, and
updates Θ by adding A. It then updates the initial states of
all plan examples by executing the learned actions in set Θ.

Properties of The ARMS Algorithm
Given a set of observed plans, ARMS can find a large number
of models, each making all the example plans in the train-
ing set correct. However, we would prefer ARMS to favor a

model that is correct and simple among all models. Since
ARMS gets the solution with the heuristic weight, the model
is simple.
Definition 1 A plan is said to be correct if (1) all actions’
preconditions hold in the state just before that action and (2)
all goal propositions hold after the last action.
Theorem 1 The solution to a SAT problem formulated us-
ing the information, predicate, action and plan constraints,
when the probability threshold is set to zero, corresponds to
a correct action model.
Proof Sketch: Suppose a solution is generated using the
information, action and plan constraints. Then for each pre-
condition (including goals) of each action in the example
plans, there must exist an action before it that achieves this
precondition with no actions in between that delete the pre-
condition (plan constraint). In addition, every observed par-
tial state literal is explained through the information con-
straints. Thus, the plan must be correct.

Error Rate and Redundancy Rate While it is important
to guarantee the correctness of a learned action model on the
training plans, ARMS uses a greedy algorithm by explaining
only the sequences that are sufficiently frequent (with proba-
bility greater than θ). Thus, it is still possible that some pre-
conditions of actions in the learned model are not explained,
if the preceding actions do not appear frequently enough.
Thus, there is a chance that some preconditions remain un-
explained.

We define errors of an action model M in an observed
plan P . The error rate Ec is obtained by computing the pro-
portion of preconditions that cannot be established by any
action in the previous part of the plan. This error is used to
measure the correctness of the model on the test plans. Sim-
ilarly, the redundancy rate Er is calculated as the proportion
of predicates in the actions’s add list that does not establish
any preconditions of any actions in later part of the plan.
This error is used to measure the degree of redundancy cre-
ated by the action model in the test data set. These two rates
can be extended to a set of plans by taking P to be the set
of plan examples. These two errors together give a picture
of how well our learned model explains each test or training
plans. Based on this, we can judge the quality of the models.

Complexity Because the process of generating the con-
straints is linear, The complexity of ARMS mainly depends
on the number of clauses and variables in the SAT problem.
Consider a domain, there are a actions and n plans. Let P
(E) be the bound on the number of the relations in the pre-
conditions (effects) in one action, respectively. If each rela-
tion is encoded as a variable in the SAT problem, the bound
of the number of the total variables is O(a ∗ (P + E)). Let
L (C) be the bound on the number of actions (constraints)
in each plan. If each constraint is encoded as a clause in the
SAT problem, the bound on the number of the total clauses
is O(n ∗ L ∗ C).

Experimental Results
It is necessary to assess the effectiveness of the learned ac-
tion model empirically. Any learned model might be incom-

Table 4: Five Domains Results(Probability Thresholdθ =
80%, PartialInformation = 5%)

Domain Name Ec Er CPU Time (Sec.)
Depots 1% 23% 6

Driverlog 0% 6% 43
Zenotravel 1% 6% 6

Rover 11% 41% 386
Satellite 13% 10% 6

Figure 1: Number of Plans

plete and error-prone. A first evaluation method (Garland
& Lesh 2002) amounts to applying a planning system to the
incomplete action model, and then assessing the model’s de-
grees of correctness. In this work, we have an available set
of example plans that can serve the dual purpose of training
and testing. Thus, we adopt an alternative evaluation method
by making full use of all available example plans. We bor-
row from the idea of cross validation in machine learning.
We split the observed plan examples into two separate sets:
a training set and a testing set. The training set is used to
build the model, and the testing set for assessing the model.
We take each test plan in the test data set in turn, and evaluate
whether the test plan can be fully explained by the learned
action model.

In order to evaluate ARMS , we get the observed plans
from the planning domains in International Planning Com-
petition 2002 2, and the plans are generated using the MIPS
planner 3. In each domain, we first generated 200 plan ex-
amples. We then applied a five-fold cross-validation, where
we select 160 plan examples as the training set from four
folds, and use the remaining fold with 40 separate plan ex-
amples as the test set. The average length of these plans
is 50. We ran all of our experiments on a personal com-
puter with a 768M memory and a Pentium Mobile Processor
1.7GHz CPU using the Linux operating system. We have
done tests on five domains, which are described in Table
4. The learned action model is described in Table 5 in the
Driverlog domain.

Number of Plans In Figure 1, they are trained on the prob-
ability threshold θ = 80% and the threshold of partial infor-

2http://planning.cis.strath.ac.uk/competition/
3http://www.informatik.uni-freiburg.de/∼mmips/

Table 5: The Learned Action Model(Driverlog Domain,
Probability Thresholdθ = 80%, PartialInformation =
5%)

ACTION load-truck (obj - obj truck - truck
loc - location)

PRE: (at truck loc), (at obj loc)
ADD: (in obj truck)
DEL: (at obj loc)
ACTION unload-truck(obj - obj truck - truck

loc - location)
PRE: (at truck loc), (in obj truck),
ADD: (at obj loc)
DEL: (in obj truck)
ACTION broad-truck(driver - driver truck - truck

loc - location)
PRE: (at truck loc),(at driver loc),(empty truck),
ADD: (driving driver truck)
DEL: (empty truck),(at driver loc)
ACTION disembark-truck(driver - driver truck - truck

loc - location)
PRE: (at truck loc),(driving driver truck)
ADD: (at driver loc),(empty truck)
DEL: (driving driver truck)
ACTION drive-truck(truck - truck loc-from - location

loc-to - location driver - driver)
PRE: (at truck loc-from),(driving driver truck),

(path loc-from location loc-to location)
ADD: (at truck loc-to),(empty truck)
DEL: (at truck loc-from)
ACTION walk(driver - driver loc-from - location

loc-to - location)
PRE: (at driver loc-from), (path loc-from loc-to)
ADD: (at driver loc-to)
DEL: (at driver loc-from)

mation θ = 5%. As we can see, as the training set increases
its size, the error rate Ec decreases while the redundancy
rate Er increases. The former effect is due to the fact that
the more the training error, the more likely a precondition is
explained by a number of plan examples. The increase in Er

can be explained by the fact that as the number of training
plans increases, the ratio of actions to goal conditions also
increases.

Partial Information In Figure 2(Figure 3),they are
trained on the probability threshold θ = 80%. How does
the partial state information affect the complexity of the al-
gorithm? When more intermediate state are known in the
plans, the number of clauses becomes larger, therefore the
CPU time increases. But it makes the solution better, be-
cause every intermediate predicate is a candidate for a pre-
condition or a effect with hight weight.

Probability Threshold In Figure 4(Figure 5),they are
trained on the threshold of partial information θ = 0%.
Note that the CPU time is needed by the whole program
(including MAXSAT’s running time). As we can see, as the
probability threshold θ increases, the number of clauses de-

Figure 2: CPU Training Time (Partial Information)

Figure 3: Error and Redundancy Rates(Partial Information)

creases, the CPU time decreases. There are two reasons to
explain how the two error rates change. One reason is that
we give the higher heuristic weight to the predicates in the
add list than in the precondition. The other reason is that
the number of plan constraints decreases when the proba-
bility threshold θ increases, and the ARMS system produces
an action model according to the action, plan and partial in-
formation constraints. Once this happens, the action model
becomes simple when the number of plan constraints de-
creases. The number of the predicates in the precondition
in the action models deceases, but the number of the pred-
icates in the add list increases. Therefore the error rate Ec

decreases and the redundancy rate Er increases while the
probability threshold is increased.

Figure 4: CPU Training Time (Probability Threshold)

Figure 5: Error and Redundancy Rates(Probability Thresh-
old)

Conclusions
ARMS is a system for automatically discovering action mod-
els from a set of observed plans where the intermediates
states are either unknown or only partially known. ARMS
operates in two phases, where it first applies a frequent set
mining algorithm to find the frequent subsets of plans that
need be explained first and then applies a SAT algorithm for
finding a consistent assignment of preconditions and effects.
We also introduce how to evaluate action model.

Our work can be extended in several directions. First, we
should add other error measures to evaluate the quality of
the learned models. Second, we wish to explore the appli-
cation of ARMS iteratively on sets of actions in a collection
of observed plans in the order of decreasing support mea-
sure. Finally, the determinate model we considered in ARMS
is still too simple to model many real world situations. We
wish to extend it to the probabilistic planning domain.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for
mining association rules. In Proc. 20th VLDB, 487–499.
Morgan Kaufmann.
Benson, S. 1995. Inductive learning of reactive action
models. In International Conference on Machine Learning,
47–54. San Fracisco, CA: Morgan Kauffman.
Blythe, J.; Kim, J.; Ramachandran, S.; and Gil, Y. 2001.
An integrated environment for knowledge acquisition. In
Intelligent User Interfaces, 13–20.
Borchers, B., and Furman, J. 1999. A two-phase exact al-
gorithm for max-sat and weighted max-sat problems. Jour-
nal of Combinatorial Optimization 2(4):299–306.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Fink, E., and Yang, Q. 1997. Automatically selecting and
using primary effects in planning: Theory and experiments.
Artificial Intelligence 89(1-2):285–315.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. J. Artif. Intell.
Res. (JAIR) 20:61–124.
Garland, A., and Lesh, N. 2002. Plan evaluation with in-
complete action descriptions. In Proceedings of the Eigh-

teenth National Conference on AI (AAAI 2002), 461 – 467.
Menlo Park, California: AAAI Press.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. Pddl—
the planning domain definition language.
Gil, Y. 1994. Learning by experimentation: Incremental
refinement of incomplete planning domains. In Eleventh
Intl Conf on Machine Learning, 87–95.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on AI
(AAAI 96), 1194–1201. Menlo Park, California: AAAI
Press.
McCluskey, T. L.; Liu, D.; and Simpson, R. 2003. Gipo
ii: Htn planning in a tool-supported knowledge engineer-
ing environment. In The International Conference on Au-
tomated Planning and Scheduling (ICAPS03).
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation
Conference (DAC’01).
Oates, T., and Cohen, P. R. 1996. Searching for planning
operators with context-dependent and probabilistic effects.
In Proceedings of the Thirteenth National Conference on
AI (AAAI 96), 865–868. Menlo Park, California: AAAI
Press.
Pednault, E. 1986. Formulating multiagent, dynamic-
world problems in the classical planning framework. In
Reasoning about Actions and Plans: Proceedings of the
1986 Workshop, 47 – 82. Morgan Kaufmann.
Sablon, G., and Bruynooghe, M. 1994. Using the event
calculus to intetgrate planning and learning in an intelligent
autonomous agent. In Current Trends in AI Planning, 254
– 265. IOS Press.
Shen, W. 1994. Autonomous Learning from the Environ-
ment. Computer Science Press, W.H. Freeman and Com-
pany.
Wang, X. 1995. Learning by observation and practice: An
incremental approach for planning operator acquisition. In
International Conference on Machine Learning, 549–557.
Winner, E., and Veloso, M. 2002. Analyzing plans with
conditional effects. In Proceedings of the Sixth Interna-
tional Conference on AI Planning and Scheduling (AIPS-
2002).
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning action
models from plan examples with incomplete knowledge.
In The International Conference on Automated Planning
and Scheduling (ICAPS05).
Zhang, H. 1997. SATO: an efficient propositional prover.
In Proceedings of the International Conference on Auto-
mated Deduction (CADE’97), volume 1249 of LNAI, 272–
275.

